skip to main content


Title: Robust Vehicle Lane Keeping Control with Networked Proactive Adaptation
Road condition is an important environmental factor for autonomous vehicle control. A dramatic change in the road condition from the nominal status is a source of uncertainty that can lead to a system failure. Once the vehicle encounters an uncertain environment, such as hitting an ice patch, it is too late to reduce the speed, and the vehicle can lose control. To cope with unforeseen uncertainties in advance, we study a proactive robust adaptive control architecture for autonomous vehicles' lane-keeping control problems. The data center generates a prior environmental uncertainty estimate by combining weather forecasts and measurements from anonymous vehicles through a spatio-temporal filter. The prior estimate contributes to designing a robust heading controller and nominal longitudinal velocity for proactive adaptation to each new condition. The control parameters are updated based on posterior information fusion with on-board measurements.  more » « less
Award ID(s):
1932529
NSF-PAR ID:
10296826
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
American Control Conference
Page Range / eLocation ID:
136 to 141
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vehicles are highly likely to lose control unexpectedly when encountering unforeseen hazardous road friction conditions. With automation and connectivity increasingly available to assist drivers, vehicle performance can significantly benefit from a road friction preview map, particularly to identify where and how friction ahead of a vehicle may be suddenly decreasing. Although many techniques enable the vehicle to measure the local friction as driving upon a surface, these encounters limit the ability of a vehicle to slow down before a low-friction surface is already encountered. Using the connectivity of connected and autonomous vehicles (CAVs), a global road friction map can be created by aggregating information from vehicles. A challenge in the creation of these global friction maps is the very large quantity of data involved, and that the measurements populating the map are generated by vehicle trajectories that do not uniformly cover the grid. This paper presents a road friction map generation strategy that aggregates the measured road-tire friction coefficients along the individual trajectories of CAVs into a road surface grid. And through clustering the friction grids further, an insight of this work is that the friction map can be represented compactly by rectangular boxes defined by a pair of corner coordinates in space and a friction value within the box. To demonstrate the method, a simulation is presented that integrates traffic simulations, vehicle dynamics and on-vehicle friction estimators, and a highway road surface where friction is changing in space, particularly over a bridge segment. The experimental results indicate that the road friction distribution can be measured effectively by collecting and aggregating the friction data from CAVs. By defining a cloud-based data sharing method for the networks of CAVs, this road friction mapping strategy provides great potential for improving CAVs' control performance and stability via database-mediated feedback systems. 
    more » « less
  2. Vehicles can easily lose control unexpectedly when encountering unforeseen hazardous road friction conditions. With automation and connectivity increasingly available to assist drivers, vehicle performance can significantly benefit from a road friction preview map, particularly to identify where and how friction ahead of a vehicle may be suddenly decreasing. Although many techniques enable the vehicle to measure the local friction as driving upon a surface, these encounters limit the ability of a vehicle to slow down before a low-friction surface is already encountered. Using the connectivity of connected and autonomous vehicles (CAVs), a global road friction map can be created by aggregating information from vehicles. A challenge in the creation of these global friction maps is the very large quantity of data involved, and that the measurements populating the map are generated by vehicle trajectories that do not uniformly cover the grid. This paper presents a road friction map generation strategy that aggregates the measured road-tire friction coefficients along the individual trajectories of CAVs into a road surface grid. In addition, through clustering the friction grids further, an insight of this work is that the friction map can be represented compactly by rectangular boxes defined by a pair of corner coordinates in space, a friction value, and a confidence interval within the box. To demonstrate the method, a simulation is presented that integrates traffic simulations, vehicle dynamics and on-vehicle friction estimators, and a highway road surface, where friction is changing in space, particularly over a bridge segment. The experimental results indicate that the road friction distribution can be measured effectively by collecting and aggregating the friction data from CAVs. 
    more » « less
  3. Autonomous vehicle trajectory tracking control is challenged by situations of varying road surface friction, especially in the scenario where there is a sudden decrease in friction in an area with high road curvature. If the situation is unknown to the control law, vehicles with high speed are more likely to lose tracking performance and/or stability, resulting in loss of control or the vehicle departing the lane unexpectedly. However, with connectivity either to other vehicles, infrastructure, or cloud services, vehicles may have access to upcoming roadway information, particularly the friction and curvature in the road path ahead. This paper introduces a model-based predictive trajectory-tracking control structure using the previewed knowledge of path curvature and road friction. In the structure, path following and vehicle stabilization are incorporated through a model predictive controller. Meanwhile, long-range vehicle speed planning and tracking control are integrated to ensure the vehicle can slow down appropriately before encountering hazardous road conditions. This approach has two major advantages. First, the prior knowledge of the desired path is explicitly incorporated into the computation of control inputs. Second, the combined transmission of longitudinal and lateral tire forces is considered in the controller to avoid violation of tire force limits while keeping performance and stability guarantees. The efficacy of the algorithm is demonstrated through an application case where a vehicle navigates a sharply curving road with varying friction conditions, with results showing that the controller can drive a vehicle up to the handling limits and track the desired trajectory accurately. 
    more » « less
  4. Abstract

    Vehicle‐to‐Everything (V2X) communication has been proposed as a potential solution to improve the robustness and safety of autonomous vehicles by improving coordination and removing the barrier of non‐line‐of‐sight sensing. Cooperative Vehicle Safety (CVS) applications are tightly dependent on the reliability of the underneath data system, which can suffer from loss of information due to the inherent issues of their different components, such as sensors' failures or the poor performance of V2X technologies under dense communication channel load. Particularly, information loss affects the target classification module and, subsequently, the safety application performance. To enable reliable and robust CVS systems that mitigate the effect of information loss, a Context‐Aware Target Classification (CA‐TC) module coupled with a hybrid learning‐based predictive modeling technique for CVS systems is proposed. The CA‐TC consists of two modules: a Context‐Aware Map (CAM), and a Hybrid Gaussian Process (HGP) prediction system. Consequently, the vehicle safety applications use the information from the CA‐TC, making them more robust and reliable. The CAM leverages vehicles' path history, road geometry, tracking, and prediction; and the HGP is utilized to provide accurate vehicles' trajectory predictions to compensate for data loss (due to communication congestion) or sensor measurements' inaccuracies. Based on offline real‐world data, a finite bank of driver models that represent the joint dynamics of the vehicle and the drivers' behavior is learned. Offline training and online model updates are combined with on‐the‐fly forecasting to account for new possible driver behaviors. Finally, the framework is validated using simulation and realistic driving scenarios to confirm its potential in enhancing the robustness and reliability of CVS systems.

     
    more » « less
  5. Real-time traffic data at intersections is significant for development of adaptive traffic light control systems. Sensors such as infrared radiation and GPS are not capable of providing detailed traffic information. Compared with these sensors, surveillance cameras have the potential to provide real scenes for traffic analysis. In this research, a You Only Look Once (YOLO)-based algorithm is employed to detect and track vehicles from traffic videos, and a predefined road mask is used to determine traffic flow and turning events in different roads. A Kalman filter is used to estimate and predict vehicle speed and location under the condition of background occlusion. The result shows that the proposed algorithm can identify traffic flow and turning events at a root mean square error (RMSE) of 10. The result shows that a Kalman filter with an intersection of union (IOU)-based tracker performs well at the condition of background occlusion. Also, the proposed algorithm can detect and track vehicles at different optical conditions. Bad weather and night-time will influence the detecting and tracking process in areas far from traffic cameras. The traffic flow extracted from traffic videos contains road information, so it can not only help with single intersection control, but also provides information for a road network. The temporal characteristic of observed traffic flow gives the potential to predict traffic flow based on detected traffic flow, which will make the traffic light control more efficient. 
    more » « less