skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Joint planning for battery swap and supercharging networks with priority service queues
Existing network planning models for electric vehicle (EV) services usually treat the battery swap and the on-board supercharging as two independent processes. This study makes an early attempt to design an EV charging network where battery swap and supercharging are jointly coordinated. The swap and supercharge processes are characterized by Erlang B and Erlang C priority queues, respectively. A strategic location-allocation model is formulated to optimize the station sites, battery stock level, and the number of superchargers at chosen sites. Three design criteria, namely, battery state-of-charge, maximum service time, and power grid constraint, are simultaneously taken into account. Meta-heuristics algorithms incorporating Tabu search are developed to tackle the proposed non-linear mixed integer optimization model. Computational results on randomly generated instances show that the priority battery service scheme outperforms the pure battery swap station in terms of spare battery investment cost and charging flexibility. The case study on a real-world traffic network comprised of 0.714 million households further shows the efficacy and advantage of the dual battery charging process for ensuring state-of-charge, service time commitment, and network-wide grid stability.  more » « less
Award ID(s):
1704933
PAR ID:
10296891
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International journal of production economics
Volume:
233
ISSN:
0925-5273
Page Range / eLocation ID:
https://doi.org/10.1016/j.ijpe.2020.108009
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Existing network planning models for electric vehicle (EV) services usually treat the battery swap and the on-board supercharging as two independent processes. This study makes an early attempt to design an EV charging network where battery swap and supercharging are jointly coordinated. The swap and supercharge processes are characterized by Erlang B and Erlang C priority queues, respectively. A strategic location-allocation model is formulated to optimize the station sites, battery stock level, and the number of superchargers at chosen sites. Three design criteria, namely, battery state-of-charge, maximum service time, and power grid constraint, are simultaneously taken into account. Meta-heuristics algorithms incorporating Tabu search are developed to tackle the proposed non-linear mixed integer optimization model. Computational results on randomly generated instances show that the priority battery service scheme outperforms the pure battery swap station in terms of spare battery investment cost and charging flexibility. The case study on a real-world traffic network comprised of 0.714 million households further shows the efficacy and advantage of the dual battery charging process for ensuring state-of-charge, service time commitment, and network-wide grid stability. 
    more » « less
  2. In this study, we raise the concern that current understandings of user perceptions and decision-making processes may jeopardize the sustainable development of charging infrastructure and wider EV adoption. This study addresses three main concerns: (1) most research focuses solely on battery electric vehicle users, neglecting plug-in hybrid (PHEV) and non-EV owners, thus failing to identify common preferences or transitional perceptions that could guide an inclusive development plan; (2) potential factors influencing charging station selection, such as the availability of nearby amenities and the role of information from social circles and user reviews, are often overlooked; and (3) used methods cannot reveal individual items' importance or uncover patterns between them as they often combine or transform the original items. To address these gaps, we conducted a survey experiment among 402 non-EV, PHEV and EV users and applied network analysis to capture their charging station selection decision-making processes. Our findings reveal that non-EV and PHEV users prioritize accessibility, whereas EV owners focus on the number of chargers. Furthermore, certain technical features, such as vehicle-to-grid capabilities, are commonly disregarded, while EV users place significant importance on engaging in amenities while charging. We also report an evolution of preferences, with users shifting their priorities on different types of information as they transition from non-EV and PHEV to EV ownership. Our results highlight the necessity for adaptive infrastructure strategies that consider the evolving preferences of different user groups to foster sustainable and equitable charging infrastructure development and broader adoption of EVs. 
    more » « less
  3. The inconvenience of charging is one of the major concern for potential electric vehicle (EV) users. In addition to building more charging facilities, electric vehicle charging assistance service has emerged for making EV charging more convenient to customers. In this paper, we consider an optimal EV charging station location problem with two types of customers. One is ordinary self-charging customers whereas the other is customers using a new service mode called valet-charging. We formulate the problem via bi-level location optimization model, where the lower level problem is a game model that characterizes customers’ station choice behaviors. To solve the hard nonlinear mixed-integer optimization problem, we design an adaptive large neighbourhood search (ALNS) algorithm for the upper level problem and a construct-improve heuristic for the lower level problem. We conduct numerical experiments to justify the efficiency of our solution method. We also conduct a need-inspired case study to derive practical insights which will help EV charging assistant service providers make strategic decisions. The convenience of charging service is one major concern for EVs. In China, NIO Inc., NETA AUTO, and FAW-Volkswagen have started to provide valet-charging service. Charging station location problem becomes complicated while taking this service into account. We believe our work develops an effective tool for charging station planners to analyze station locations as well as the impact of valet charging services. 
    more » « less
  4. Range anxiety and lack of adequate access to fast charging are proving to be important impediments to electric vehicle (EV) adoption. While many techniques to fast charging EV batteries (model-based & model-free) have been developed, they have focused on a single Lithium-ion cell. Extensions to battery packs are scarce, often considering simplified architectures (e.g., series-connected) for ease of modeling. Computational considerations have also restricted fast-charging simulations to small battery packs, e.g., four cells (for both series and parallel connected cells). Hence, in this paper, we pursue a model-free approach based on reinforcement learning (RL) to fast charge a large battery pack (comprising 444 cells). Each cell is characterized by an equivalent circuit model coupled with a second-order lumped thermal model to simulate the battery behavior. After training the underlying RL, the developed model will be straightforward to implement with low computational complexity. In detail, we utilize a Proximal Policy Optimization (PPO) deep RL as the training algorithm. The RL is trained in such a way that the capacity loss due to fast charging is minimized. The pack’s highest cell surface temperature is considered an RL state, along with the pack’s state of charge. Finally, in a detailed case study, the results are compared with the constant current-constant voltage (CC-CV) approach, and the outperformance of the RL-based approach is demonstrated. Our proposed PPO model charges the battery as fast as a CC-CV with a 5C constant stage while maintaining the temperature as low as a CC-CV with a 4C constant stage. 
    more » « less
  5. null (Ed.)
    Electric bikes have emerged as a popular form of transportation for short trips in dense urban areas and are being increasingly adopted by bike share programs for easy accessibility to riders. Motivated by the rising popularity of electric bikes, a form of an electric vehicle, we study the research question of how to design a zero-carbon electric bike share system. Specifically we study the challenges in designing solar charging stations for electric bike systems that enable either net-zero or a fully zero-carbon operation. We design a prototype two bike solar charging station to demonstrate the feasibility of our approach. Using insights and data from our prototype solar charging station, we then conduct a data driven analysis of the costs and benefits of converting an entire bike system into one powered using solar charging stations. Using empirical analysis, we determine the panel and battery capacity for each station, and perform a feasibility evaluation of the system using 8 months of ridership data. Our results show that equipping each bike station with a single grid-tied solar panel is adequate to meet the annual charging demand from electric bikes and achieve net-zero operation using net-metering. For an off-grid setup, our analysis shows that a bike station needs twice as many solar panels, on average, along with a 1.8kWh battery, with the busiest bike station needing 6× more solar capacity than in the net-metering case. Our analysis also reveals a tradeoff between the array size and the battery size needed to achieve true-zero carbon operation for the electric bike share system. 
    more » « less