skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimal Location of Electrical Vehicle Charging Stations With Both Self-and Valet-Charging Service
The inconvenience of charging is one of the major concern for potential electric vehicle (EV) users. In addition to building more charging facilities, electric vehicle charging assistance service has emerged for making EV charging more convenient to customers. In this paper, we consider an optimal EV charging station location problem with two types of customers. One is ordinary self-charging customers whereas the other is customers using a new service mode called valet-charging. We formulate the problem via bi-level location optimization model, where the lower level problem is a game model that characterizes customers’ station choice behaviors. To solve the hard nonlinear mixed-integer optimization problem, we design an adaptive large neighbourhood search (ALNS) algorithm for the upper level problem and a construct-improve heuristic for the lower level problem. We conduct numerical experiments to justify the efficiency of our solution method. We also conduct a need-inspired case study to derive practical insights which will help EV charging assistant service providers make strategic decisions. The convenience of charging service is one major concern for EVs. In China, NIO Inc., NETA AUTO, and FAW-Volkswagen have started to provide valet-charging service. Charging station location problem becomes complicated while taking this service into account. We believe our work develops an effective tool for charging station planners to analyze station locations as well as the impact of valet charging services.  more » « less
Award ID(s):
1761022
PAR ID:
10509754
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Automation Science and Engineering
ISSN:
1545-5955
Page Range / eLocation ID:
1 to 15
Subject(s) / Keyword(s):
Electric vehicle, location-capacity problem, valet-charging, bi-level optimization, adaptive large neighbourhood search.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Charging infrastructure is the coupling link between power and transportation networks, thus determining charging station siting is necessary for planning of power and transportation systems. While previous works have either optimized for charging station siting given historic travel behavior, or optimized fleet routing and charging given an assumed placement of the stations, this paper introduces a linear program that optimizes for station siting and macroscopic fleet operations in a joint fashion. Given an electricity retail rate and a set of travel demand requests, the optimization minimizes total cost for an autonomous EV fleet comprising of travel costs, station procurement costs, fleet procurement costs, and electricity costs, including demand charges. Specifically, the optimization returns the number of charging plugs for each charging rate (e.g., Level 2, DC fast charging) at each candidate location, as well as the optimal routing and charging of the fleet. From a case-study of an electric vehicle fleet operating in San Francisco, our results show that, albeit with range limitations, small EVs with low procurement costs and high energy efficiencies are the most cost-effective in terms of total ownership costs. Furthermore, the optimal siting of charging stations is more spatially distributed than the current siting of stations, consisting mainly of high-power Level 2 AC stations (16.8 kW) with a small share of DC fast charging stations and no standard 7.7kW Level 2 stations. Optimal siting reduces the total costs, empty vehicle travel, and peak charging load by up to 10%. 
    more » « less
  2. null (Ed.)
    Existing network planning models for electric vehicle (EV) services usually treat the battery swap and the on-board supercharging as two independent processes. This study makes an early attempt to design an EV charging network where battery swap and supercharging are jointly coordinated. The swap and supercharge processes are characterized by Erlang B and Erlang C priority queues, respectively. A strategic location-allocation model is formulated to optimize the station sites, battery stock level, and the number of superchargers at chosen sites. Three design criteria, namely, battery state-of-charge, maximum service time, and power grid constraint, are simultaneously taken into account. Meta-heuristics algorithms incorporating Tabu search are developed to tackle the proposed non-linear mixed integer optimization model. Computational results on randomly generated instances show that the priority battery service scheme outperforms the pure battery swap station in terms of spare battery investment cost and charging flexibility. The case study on a real-world traffic network comprised of 0.714 million households further shows the efficacy and advantage of the dual battery charging process for ensuring state-of-charge, service time commitment, and network-wide grid stability. 
    more » « less
  3. null (Ed.)
    Existing network planning models for electric vehicle (EV) services usually treat the battery swap and the on-board supercharging as two independent processes. This study makes an early attempt to design an EV charging network where battery swap and supercharging are jointly coordinated. The swap and supercharge processes are characterized by Erlang B and Erlang C priority queues, respectively. A strategic location-allocation model is formulated to optimize the station sites, battery stock level, and the number of superchargers at chosen sites. Three design criteria, namely, battery state-of-charge, maximum service time, and power grid constraint, are simultaneously taken into account. Meta-heuristics algorithms incorporating Tabu search are developed to tackle the proposed non-linear mixed integer optimization model. Computational results on randomly generated instances show that the priority battery service scheme outperforms the pure battery swap station in terms of spare battery investment cost and charging flexibility. The case study on a real-world traffic network comprised of 0.714 million households further shows the efficacy and advantage of the dual battery charging process for ensuring state-of-charge, service time commitment, and network-wide grid stability. 
    more » « less
  4. In this study, we raise the concern that current understandings of user perceptions and decision-making processes may jeopardize the sustainable development of charging infrastructure and wider EV adoption. This study addresses three main concerns: (1) most research focuses solely on battery electric vehicle users, neglecting plug-in hybrid (PHEV) and non-EV owners, thus failing to identify common preferences or transitional perceptions that could guide an inclusive development plan; (2) potential factors influencing charging station selection, such as the availability of nearby amenities and the role of information from social circles and user reviews, are often overlooked; and (3) used methods cannot reveal individual items' importance or uncover patterns between them as they often combine or transform the original items. To address these gaps, we conducted a survey experiment among 402 non-EV, PHEV and EV users and applied network analysis to capture their charging station selection decision-making processes. Our findings reveal that non-EV and PHEV users prioritize accessibility, whereas EV owners focus on the number of chargers. Furthermore, certain technical features, such as vehicle-to-grid capabilities, are commonly disregarded, while EV users place significant importance on engaging in amenities while charging. We also report an evolution of preferences, with users shifting their priorities on different types of information as they transition from non-EV and PHEV to EV ownership. Our results highlight the necessity for adaptive infrastructure strategies that consider the evolving preferences of different user groups to foster sustainable and equitable charging infrastructure development and broader adoption of EVs. 
    more » « less
  5. null (Ed.)
    Electric bikes have emerged as a popular form of transportation for short trips in dense urban areas and are being increasingly adopted by bike share programs for easy accessibility to riders. Motivated by the rising popularity of electric bikes, a form of an electric vehicle, we study the research question of how to design a zero-carbon electric bike share system. Specifically we study the challenges in designing solar charging stations for electric bike systems that enable either net-zero or a fully zero-carbon operation. We design a prototype two bike solar charging station to demonstrate the feasibility of our approach. Using insights and data from our prototype solar charging station, we then conduct a data driven analysis of the costs and benefits of converting an entire bike system into one powered using solar charging stations. Using empirical analysis, we determine the panel and battery capacity for each station, and perform a feasibility evaluation of the system using 8 months of ridership data. Our results show that equipping each bike station with a single grid-tied solar panel is adequate to meet the annual charging demand from electric bikes and achieve net-zero operation using net-metering. For an off-grid setup, our analysis shows that a bike station needs twice as many solar panels, on average, along with a 1.8kWh battery, with the busiest bike station needing 6× more solar capacity than in the net-metering case. Our analysis also reveals a tradeoff between the array size and the battery size needed to achieve true-zero carbon operation for the electric bike share system. 
    more » « less