skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Whispering: Joint Service Offloading and Computation Reuse in Cloud-Edge Networks
Due to the proliferation of Internet of Things (IoT) and application/user demands that challenge communication and computation, edge computing has emerged as the paradigm to bring computing resources closer to users. In this paper, we present Whispering, an analytical model for the migration of services (service offloading) from the cloud to the edge, in order to minimize the completion time of computational tasks offloaded by user devices and improve the utilization of resources. We also empirically investigate the impact of reusing the results of previously executed tasks for the execution of newly received tasks (computation reuse) and propose an adaptive task offloading scheme between edge and cloud. Our evaluation results show that Whispering achieves up to 35% and 97% (when coupled with computation reuse) lower task completion times than cases where tasks are executed exclusively at the edge or the cloud.  more » « less
Award ID(s):
2016714
PAR ID:
10296929
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ICC 2021 - IEEE International Conference on Communications
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In edge computing use cases (e.g., smart cities), where several users and devices may be in close proximity to each other, computational tasks with similar input data for the same services (e.g., image or video annotation) may be offloaded to the edge. The execution of such tasks often yields the same results (output) and thus duplicate (redundant) computation. Based on this observation, prior work has advocated for "computation reuse", a paradigm where the results of previously executed tasks are stored at the edge and are reused to satisfy incoming tasks with similar input data, instead of executing these incoming tasks from scratch. However, realizing computation reuse in practical edge computing deployments, where services may be offered by multiple (distributed) edge nodes (servers) for scalability and fault tolerance, is still largely unexplored. To tackle this challenge, in this paper, we present Reservoir, a framework to enable pervasive computation reuse at the edge, while imposing marginal overheads on user devices and the operation of the edge network infrastructure. Reservoir takes advantage of Locality Sensitive Hashing (LSH) and runs on top of Named-Data Networking (NDN), extending the NDN architecture for the realization of the computation reuse semantics in the network. Our evaluation demonstrated that Reservoir can reuse computation with up to an almost perfect accuracy, achieving 4.25-21.34x lower task completion times compared to cases without computation reuse. 
    more » « less
  2. In edge computing deployments, where devices may be in close proximity to each other, these devices may offload similar computational tasks (i.e., tasks with similar input data for the same edge computing service or for services of the same nature). This results in the execution of duplicate (redundant) computation, which may become a pressing issue for future edge computing environments, since such deployments are envisioned to consist of small-scale data-centers at the edge. To tackle this issue, in this paper, we highlight the importance of paradigms for the deduplication and reuse of computation at the network edge. Such paradigms have the potential to significantly reduce the completion times for offloaded tasks, accommodating more users, devices, and tasks with the same volume of deployed edge computing resources, however, they come with their own technical challenges. Finally, we present a multi-layer architecture to enable computation deduplication and reuse at the network edge and discuss open challenges and future research directions. 
    more » « less
  3. With distributed communication, computation, and storage resources close to end users, edge computing has great potentials to support delay-sensitive industrial applications involving intelligent edge devices. Cognitive portable ground penetrating radars (GPRs) are expected to achieve high-quality sensing performance in a variety of industrial environments by operating intelligently and adaptively under varying sensing conditions. Although edge computing makes it very promising to develop cognitive portable GPRs, both strict performance requirement and trade-offs between communication and computation pose significant challenges. This paper presents an edge computing framework for cognitive portable GPRs. Specifically, the system architecture of an EC-enabled cognitive portable GPR is developed. Based on the identification of various involved computation tasks, an offloading policy was proposed to determine whether computation tasks should be executed locally or offloaded to the edge server. Experimental results show the efficacy of the proposed methods. The framework also provides insight into the design of cognitive Internet of things (IoT) supported by edge computing. 
    more » « less
  4. Pervasive Edge Computing (PEC), a recent addition to the edge computing paradigm, leverages the computing resources of end-user devices to execute computation tasks in close proximity to users. One of the primary challenges in the PEC environment is determining the appropriate servers for offloading computation tasks based on factors, such as computation latency, response quality, device reliability, and cost of service. Computation outsourcing in the PEC ecosystem requires additional security and privacy considerations. Finally, mechanisms need to be in place to guarantee fair payment for the executed service(s). We present 𝑃𝐸𝑃𝑃𝐸𝑅, a novel, privacy-preserving, and decentralized framework that addresses aforementioned challenges by utilizing blockchain technology and trusted execution environments (TEE). 𝑃𝐸𝑃𝑃𝐸𝑅 improves the performance of PEC by allocating resources among end-users efficiently and securely. It also provides the underpinnings for building a financial ecosystem at the pervasive edge. To evaluate the effectiveness of 𝑃𝐸𝑃𝑃𝐸𝑅, we developed and deployed a proof of concept implementation on the Ethereum blockchain, utilizing Intel SGX as the TEE technology. We propose a simple but highly effective remote attestation method that is particularly beneficial to PEC compared to the standard remote attestation method used today. Our extensive comparison experiment shows that 𝑃𝐸𝑃𝑃𝐸𝑅 is 1.23Γ— to 2.15Γ— faster than the current standard remote attestation procedure. In addition, we formally prove the security of our system using the universal composability (UC) framework. 
    more » « less
  5. In recent studies, researchers have developed various computation offloading frameworks for bringing cloud services closer to the user via edge networks. Specifically, an edge device needs to offload computationally intensive tasks because of energy and processing constraints. These constraints present the challenge of identifying which edge nodes should receive tasks to reduce overall resource consumption. We propose a unique solution to this problem which incorporates elements from Knowledge-Defined Networking (KDN) to make intelligent predictions about offloading costs based on historical data. Each server instance can be represented in a multidimensional feature space where each dimension corresponds to a predicted metric. We compute features for a "hyperprofile" and position nodes based on the predicted costs of offloading a particular task. We then perform a k-Nearest Neighbor (kNN) query within the hyperprofile to select nodes for offloading computation. This paper formalizes our hyperprofile-based solution and explores the viability of using machine learning (ML) techniques to predict metrics useful for computation offloading. We also investigate the effects of using different distance metrics for the queries. Our results show various network metrics can be modeled accurately with regression, and there are circumstances where kNN queries using Euclidean distance as opposed to rectilinear distance is more favorable. 
    more » « less