skip to main content


Title: A universal discoidal nanoplatform for the intracellular delivery of PNAs
Peptide nucleic acids (PNAs) have gained considerable attention due to their remarkable potential in gene editing and targeting-based strategies. However, cellular delivery of PNAs remains a challenge in developing their broader therapeutic applications. Here, we investigated a novel complex made of lipid bicelles and PNA-based carriers for the efficient delivery of PNAs. For proof of concept, PNAs targeting microRNA (miR) 210 and 155 were tested. Comprehensive evaluation of positive as well as negative charge-containing bicelles with PNA : lipid ratios of 1 : 100, 1 : 1000, and 1 : 2500 was performed. The negatively charged bicelles with a PNA : lipid molar ratio of 1 : 2500 yielded a discoidal shape with a uniform diameter of ∼30 nm and a bilayer thickness of 5 nm, while the positively charged bicellar system contained irregular vesicles after the incorporation of PNA. Small-angle X-ray scattering (SAXS) analysis was performed to provide insight into how the hydrophobic PNAs interact with bicelles. Further, flow cytometry followed by confocal microscopy analyses substantiate the superior transfection efficiency of bicelles containing dye-conjugated antimiR PNAs. Functional analysis also confirmed miR inhibition by PNA oligomers delivered by bicelles. The nanodiscoidal complex opens a new pathway to deliver PNAs, which, on their own, are a great challenge to be endocytosed into cells.  more » « less
Award ID(s):
1605971
PAR ID:
10296936
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Nanoscale
Volume:
11
Issue:
26
ISSN:
2040-3364
Page Range / eLocation ID:
12517 to 12529
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Peptide nucleic acids (PNAs) are nucleic acid analogs with hybridization properties and enzymatic stability superior to that of DNA. In addition to gene targeting applications, PNAs have garnered significant attention as bio‐polymers due to the Watson–Crick‐based molecular recognition and flexibility of synthesis. Here, PNA amphiphiles are engineered using chemically modified gamma PNA (8 mer in length) containing hydrophilic diethylene glycol units at the gamma position and covalently conjugated lauric acid (C12) as a hydrophobic moiety. Gamma PNA (γ  PNA) amphiphiles self‐assemble into spherical vesicles. Further, nano‐assemblies (NA) are formulated using the amphiphilic γ  PNA as a polymer via ethanol injection‐based protocols. Comprehensive head‐on comparison of the physicochemical and cellular uptake properties of PNA derived self‐ and NA is performed. Small‐angle neutron and X‐ray scattering analysis reveal ellipsoidal morphology of γ  PNA NA that results in superior cellular delivery compate to the spherical self‐assembly. Next, the functional activities of γ  PNA self‐and NA in lymphoma cells via multiple endpoints, including gene expression, cell viability, and apoptosis‐based assays are compared. Overall, it is established that γ  PNA amphiphile is a functionally active bio‐polymer to formulate NA for a wide range of biomedical applications.

     
    more » « less
  2. Blood-brain barrier (BBB) dysfunction is prevalent in Alzheimer’s disease and other neurological disorders. Restoring normal BBB function through RNA therapy is a potential avenue for addressing cerebrovascular changes in these disorders that may lead to cognitive decline. Although lipid nanoparticles have been traditionally used as drug carriers for RNA, bicelles have been emerging as a better alternative because of their higher cellular uptake and superior transfection capabilities. Cationic bicelles composed of DPPC/DC7PC/DOTAP at molar ratios of 63.8/25.0/11.2 were evaluated for the delivery of RNA in polarized hCMEC/D3 monolayers, a widely used BBB cell culture model. RNA-bicelle complexes were formed at five N/P ratios (1:1 to 5:1) by a thin-film hydration method. The RNA-bicelle complexes at N/P ratios of 3:1 and 4:1 exhibited optimal particle characteristics for cellular delivery. The cellular uptake of cationic bicelles laced with 1 mol% DiI-C18 was confirmed by flow cytometry and confocal microscopy. The ability of cationic bicelles (N/P ratio 4:1) to transfect polarized hCMEC/D3 with FITC-labeled control siRNA was tested vis-a-vis commercially available Lipofectamine RNAiMAX. These studies demonstrated the higher transfection efficiency and greater potential of cationic bicelles for RNA delivery to the BBB endothelium.

     
    more » « less
  3. Abstract

    Multidrug-resistant (MDR) bacteria pose a grave concern to global health, which is perpetuated by a lack of new treatments and countermeasure platforms to combat outbreaks or antibiotic resistance. To address this, we have developed a Facile Accelerated Specific Therapeutic (FAST) platform that can develop effective peptide nucleic acid (PNA) therapies against MDR bacteria within a week. Our FAST platform uses a bioinformatics toolbox to design sequence-specific PNAs targeting non-traditional pathways/genes of bacteria, then performs in-situ synthesis, validation, and efficacy testing of selected PNAs. As a proof of concept, these PNAs were tested against five MDR clinical isolates: carbapenem-resistantEscherichia coli, extended-spectrum beta-lactamaseKlebsiella pneumoniae, New Delhi Metallo-beta-lactamase-1 carryingKlebsiella pneumoniae, and MDRSalmonella enterica. PNAs showed significant growth inhibition for 82% of treatments, with nearly 18% of treatments leading to greater than 97% decrease. Further, these PNAs are capable of potentiating antibiotic activity in the clinical isolates despite presence of cognate resistance genes. Finally, the FAST platform offers a novel delivery approach to overcome limited transport of PNAs into mammalian cells by repurposing the bacterial Type III secretion system in conjunction with a kill switch that is effective at eliminating 99.6% of an intracellularSalmonellainfection in human epithelial cells.

     
    more » « less
  4. Abstract

    Peptide nucleic acids (PNAs) have primarily been used to achieve therapeutic gene modulation through antisense strategies since their design in the 1990s. However, the application of PNAs as a functional nanomaterial has been more recent. We recently reported thatγ‐modified peptide nucleic acids (γPNAs) could be used to enable formation of complex, self‐assembling nanofibers in select polar aprotic organic solvent mixtures. Here we demonstrate that distinctγPNA strands, each with a high density ofγ‐modifications can form complex nanostructures at constant temperatures within 30 minutes. Additionally, we demonstrate DNA‐assisted isothermal growth ofγPNA nanofibers, thereby overcoming a key hurdle for future scale‐up of applications related to nanofiber growth and micropatterning.

     
    more » « less
  5. Peptide nucleic acids (PNAs) are a promising group of synthetic analogues of DNA and RNA that offer several distinct advantages over the naturally occurring nucleic acids for applications in biosensing, drug delivery, and nanoelectronics. Because of its structural differences from DNA/RNA, methods to analyze and assess the structure, conformations, and dynamics are needed. In this work, we develop synergistic techniques for the study of the PNA conformation. We use CuQ2, a Cu(II) complex with 8-hydroxyquinoline (HQ), as an alternative base pair and as a spin label in electron paramagnetic resonance (EPR) distance methods. We use molecular dynamics (MD) simulations with newly developed force field parameters for the spin labels to interpret the distance constraints determined by EPR. We complement these methods by UV–vis and circular dichroism measurements and assess the efficacy of the Cu(II) label on a PNA duplex whose backbone is based on aminoethylglycine and a duplex with a hydroxymethyl backbone modification. We show that the Cu(II) label functions efficiently within the standard PNA and the hydroxymethyl-modified PNA and that the MD parameters may be used to accurately reproduce our EPR findings. Through the combination of EPR and MD, we gain new insights into the PNA structure and conformations as well as into the mechanism of orientational selectivity in Cu(II) EPR at X-band. These results present for the first time a rigid Cu(II) spin label used for EPR distance measurements in PNA and the accompanying MD force fields for the spin label. Our studies also reveal that the spin labels have a low impact on the structure of the PNA duplexes. The combined MD and EPR approach represents an important new tool for the characterization of the PNA duplex structure and provides valuable information to aid in the rational application of PNA at large. 
    more » « less