skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: In-Situ Characterization of Pore Formation Dynamics in Pulsed Wave Laser Powder Bed Fusion
Laser powder bed fusion (LPBF) is an additive manufacturing technology with the capability of printing complex metal parts directly from digital models. Between two available emission modes employed in LPBF printing systems, pulsed wave (PW) emission provides more control over the heat input compared to continuous wave (CW) emission, which is highly beneficial for printing parts with intricate features. However, parts printed with pulsed wave LPBF (PW-LPBF) commonly contain pores, which degrade their mechanical properties. In this study, we reveal pore formation mechanisms during PW-LPBF in real time by using an in-situ high-speed synchrotron x-ray imaging technique. We found that vapor depression collapse proceeds when the laser irradiation stops within one pulse, resulting in occasional pore formation during PW-LPBF. We also revealed that the melt ejection and rapid melt pool solidification during pulsed-wave laser melting resulted in cavity formation and subsequent formation of a pore pattern in the melted track. The pore formation dynamics revealed here may provide guidance on developing pore elimination approaches.  more » « less
Award ID(s):
2002840
PAR ID:
10297156
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Materials
Volume:
14
Issue:
11
ISSN:
1996-1944
Page Range / eLocation ID:
2936
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Laser powder bed fusion (LPBF) is a 3D printing technology that can print metal parts with complex geometries without the design constraints of traditional manufacturing routes. However, the parts printed by LPBF normally contain many more pores than those made by conventional methods, which severely deteriorates their properties. Here, by combining in-situ high-speed high-resolution synchrotron x-ray imaging experiments and multi-physics modeling, we unveil the dynamics and mechanisms of pore motion and elimination in the LPBF process. We find that the high thermocapillary force, induced by the high temperature gradient in the laser interaction region, can rapidly eliminate pores from the melt pool during the LPBF process. The thermocapillary force driven pore elimination mechanism revealed here may guide the development of 3D printing approaches to achieve pore-free 3D printing of metals. 
    more » « less
  2. The dynamic phenomenon of a melt pool during the laser powder bed fusion (LPBF) process is complex and sensitive to process parameters. As the energy density input exceeds a certain threshold, a huge vapor depression may form, known as the keyhole. This study focuses on understanding the keyhole behavior and related pore formation during the LPBF process through numerical analysis. For this purpose, a thermo-fluid model with discrete powder particles is developed. The powder distribution, obtained from a discrete element method (DEM), is incorporated into the computational domain to develop a 3D process physics model using flow-3d. The melt pool formation during the conduction mode and the keyhole mode of melting has been discerned and explained. The high energy density leads to the formation of a vapor column and consequently pores under the laser scan track. Further, the keyhole shape resulted from different laser powers and scan speeds is investigated. The numerical results indicated that the keyhole size increases with the increase in the laser power even with the same energy density. The keyhole becomes stable at a higher power, which may reduce the occurrence of pores during laser scanning. 
    more » « less
  3. The use of laser powder bed fusion (LPBF) for faster and more customized manufacturing has grown significantly. However, LPBF parts often require welding to other components, raising concerns about their weldability due to differences in microstructure compared to conventionally manufactured parts. Despite its importance, research on the weldability of additive manufacturing materials remains limited. This study aims to evaluate the susceptibility of LPBF 316L stainless steel to weld solidification cracking using transverse varestraint testing and compare results with conventional 316L. Tests were conducted across strain levels from 0.5 to 7%, revealing a saturated strain of 4%, with maximum crack length (MCL), maximum crack distance (MCD), and total number of cracks (TNC) of approximately 0.36 mm and 31, respectively. Compared to existing literature, LPBF 316L produced with optimized printing parameters and low nickel equivalent content exhibited higher resistance to weld solidification cracking, reflected in lower MCL and MCD values. Cracks initiated at the solidus interface and propagated along the ferrite–austenite boundary under strain. Microstructural changes were observed after testing, transitioning from cellular austenitic solidification in LPBF to a skeletal ferrite-austenitic mode due to material remelting and slower cooling rates. These findings highlight that reduced nickel equivalent, alongside optimized printing parameters, contribute to enhanced weld solidification cracking resistance in LPBF 316L. This study advances understanding of the weldability of LPBF materials. 
    more » « less
  4. Laser powder bed fusion (LPBF) is an additive manufacturing process that has gained interest for its material fabrication due to multiple advantages, such as the ability to print parts with small feature sizes, good mechanical properties, reduced material waste, etc. However, variations in the key process parameters in LPBF may result in the instantiation of porosity defects and variation in build rate. Particularly, volumetric energy density (VED) is a variable that encapsulates a number of those parameters and represents the amount of energy input from the laser source to the feedstock. VED has been traditionally used to inform the quality of the printed part but different values of VED are presented as optimal values for certain material systems. An optimal VED value can be maintained by changing the key process parameters so that various combinations yield a constant value. In this study, an optimal constant VED value is maintained while printing SS316L with variable key processing parameters. Porosity analysis is performed using optical microscopy, as well as X-ray computed tomography, to reveal the volume density and distribution of those pores. Two primary defect categories are identified, namely lack of fusion and porosity induced by balling defects. The findings indicate that, even at optimal VED, variations in process parameters can significantly influence defect type, underscoring the sensitivity of defect formation to the variation of these parameters. Furthermore, a minor change in the build rate, driven by adjustments in process parameters, was found to influence defect categories. These findings emphasize that fine tuning the process parameters and build rate is essential to minimize defects. Finally, fiducial marks have been identified as a source of unintentional porosity defects. These results enable the refinement of process parameters, ultimately optimizing LPBF to achieve enhanced material density and expedite the printing. 
    more » « less
  5. Additive manufacturing (AM) has the potential for improving the sustainability of metal processing through decreased energy and materials usage compared to casting and forging. Laser powder bed fusion (LPBF) of high-temperature alloys such as nickel alloy 718 is one of the key modalities supporting this effort. One of the major drawbacks to LPBF is its slow build speed on the order of 5–10 cubic centimeters per hour print speed. This experimental study investigates how to increase the productivity of the LPBF process by switching from a traditional Gaussian laser shape to a ring laser shape using a nLight multi-modal laser. The objective is to increase productivity, reducing energy consumption and time, without sacrificing mechanical properties by switching to the ring laser thereby improving the sustainability of LPBF. Results include measuring the energy consumption of an Open Additive LPBF system during 718 printing and comparing the microstructure and mechanical properties of the two different lasers. 
    more » « less