PurposeSurface quality and porosity significantly influence the structural and functional properties of the final product. This study aims to establish and explain the underlying relationships among processing parameters, top surface roughness and porosity level in additively manufactured 316L stainless steel. Design/methodology/approachA systematic variation of printing process parameters was conducted to print cubic samples based on laser power, speed and their combinations of energy density. Melt pool morphologies and dimensions, surface roughness quantified by arithmetic mean height (Sa) and porosity levels were characterized via optical confocal microscopy. FindingsThe study reveals that the laser power required to achieve optimal top surface quality increases with the volumetric energy density (VED) levels. A smooth top surface (Sa < 15 µm) or a rough surface with humps at high VEDs (VED > 133.3 J/mm3) can serve as indicators for fully dense bulk samples, while rough top surfaces resulting from melt pool discontinuity correlate with high porosity levels. Under insufficient VED, melt pool discontinuity dominates the top surface. At high VEDs, surface quality improves with increased power as mitigation of melt pool discontinuity, followed by the deterioration with hump formation. Originality/valueThis study reveals and summarizes the formation mechanism of dominant features on top surface features and offers a potential method to predict the porosity by observing the top surface features with consideration of processing conditions.
more »
« less
This content will become publicly available on January 1, 2026
Influence of Process Parameter and Build Rate Variations on Defect Formation in Laser Powder Bed Fusion SS316L
Laser powder bed fusion (LPBF) is an additive manufacturing process that has gained interest for its material fabrication due to multiple advantages, such as the ability to print parts with small feature sizes, good mechanical properties, reduced material waste, etc. However, variations in the key process parameters in LPBF may result in the instantiation of porosity defects and variation in build rate. Particularly, volumetric energy density (VED) is a variable that encapsulates a number of those parameters and represents the amount of energy input from the laser source to the feedstock. VED has been traditionally used to inform the quality of the printed part but different values of VED are presented as optimal values for certain material systems. An optimal VED value can be maintained by changing the key process parameters so that various combinations yield a constant value. In this study, an optimal constant VED value is maintained while printing SS316L with variable key processing parameters. Porosity analysis is performed using optical microscopy, as well as X-ray computed tomography, to reveal the volume density and distribution of those pores. Two primary defect categories are identified, namely lack of fusion and porosity induced by balling defects. The findings indicate that, even at optimal VED, variations in process parameters can significantly influence defect type, underscoring the sensitivity of defect formation to the variation of these parameters. Furthermore, a minor change in the build rate, driven by adjustments in process parameters, was found to influence defect categories. These findings emphasize that fine tuning the process parameters and build rate is essential to minimize defects. Finally, fiducial marks have been identified as a source of unintentional porosity defects. These results enable the refinement of process parameters, ultimately optimizing LPBF to achieve enhanced material density and expedite the printing.
more »
« less
- Award ID(s):
- 2117667
- PAR ID:
- 10568314
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Materials
- Volume:
- 18
- Issue:
- 2
- ISSN:
- 1996-1944
- Page Range / eLocation ID:
- 435
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This work pertains to the laser powder bed fusion (LPBF) additive manufacturing process. The goal of this work is to mitigate the expense and time required for qualification of laser powder bed fusion processed parts. In pursuit of this goal, the objective of this work is to develop and apply a physics-based model predictive control strategy to modulate the thermal history before the part is built. The key idea is to determine a desired thermal history for a given part a priori to printing using a physics-based model. Subsequently, a model predictive control strategy is developed to attain the desired thermal history by changing the laser power layer-by-layer. This is an important area of research because the spatiotemporal distribution of temperature within the part (also known as the thermal history) influences flaw formation, microstructure evolution, and surface/geometric integrity, all of which ultimately determine the mechanical properties of the part. Currently, laser powder bed fusion parts are qualified using a build-and-test approach wherein parameters are optimized by printing simple test coupons, followed by examining their properties via materials characterization and testing — a cumbersome and expensive process that often takes years. These parameters, once optimized, are maintained constant throughout the process for a part. However, thermal history is a function of over 50 processing parameters including material properties and part design, consequently, the current approach of parameter optimization based on empirical testing of simple test coupons seldom transfers successfully to complex, practical parts. Rather than instinctive process parameter optimization, the model predictive control strategy presents a radically different approach to LPBF part qualification that is based on understanding and modulating the causal thermal physics of the process. The approach has three steps: (Step 1) Predict – given a part geometry, use a rapid, mesh-less physics-based simulation model to predict its thermal history, analyze the predicted thermal history trend, isolate potential red flag problems such as heat buildup, and set a desired thermal history that corrects deleterious trends. (Step 2) Parse – iteratively simulate the thermal history as a function of various laser power levels layer-by-layer over a fixed time horizon. (Step 3) Select – the laser power that provides the closest match to the desired thermal history. Repeat Steps 2 and 3 until the part is completely built. We demonstrate through experiments with various geometries two advantages of this model predictive control strategy when applied to laser powder bed fusion: (i) prevent part failures due to overheating and distortion, while mitigating the need for anchoring supports; and (ii) improve surface integrity of hard to access internal surfaces.more » « less
-
PurposeThe ability to use laser powder bed fusion (LPBF) to print parts with tailored surface topography could reduce the need for costly post-processing. However, characterizing the as-built surface topography as a function of process parameters is crucial to establishing linkages between process parameters and surface topography and is currently not well understood. The purpose of this study is to measure the effect of different LPBF process parameters on the as-built surface topography of Inconel 718 parts. Design/methodology/approachInconel 718 truncheon specimens with different process parameters, including single- and double contour laser pass, laser power, laser scan speed, build orientation and characterize their as-built surface topography using deterministic and areal surface topography parameters are printed. The effect of both individual process parameters, as well as their interactions, on the as-built surface topography are evaluated and linked to the underlying physics, informed by surface topography data. FindingsDeterministic surface topography parameters are more suitable than areal surface topography parameters to characterize the distinct features of the as-built surfaces that result from LPBF. The as-built surface topography is strongly dependent on the built orientation and is dominated by the staircase effect for shallow orientations and partially fused metal powder particles for steep orientations. Laser power and laser scan speed have a combined effect on the as-built surface topography, even when maintaining constant laser energy density. Originality/valueThis work addresses two knowledge gaps. (i) It introduces deterministic instead of areal surface topography parameters to unambiguously characterize the as-built LPBF surfaces. (ii) It provides a methodical study of the as-built surface topography as a function of individual LPBF process parameters and their interaction effects.more » « less
-
Abstract Laser powder bed fusion (LPBF) is an enabling process manufacture of complex metal components. However, LPBF is prone to generate geometrical defects (e.g., porosity, lack of fusion), which causes a significant fatigue scattering. However, LPBF fatigue scattering data and analysis in the literature are not only sparse and limited to tension-compression mode but also inconsistent. This article presents a robust high-frequency fatigue testing method to construct stress-cycle curves of SS 316L to understand the scattering nature and predict the scattering pattern. A series of bending fatigue tests are performed at different stress amplitudes. Two different runout criteria are used to investigate fatigue life, fatigue limits, and scattering. The endurance limit reaches around 300 MPa for the defect size distribution at the selected process space. The defect size-based fatigue limit model is found to underestimate the endurance limit by about 30 MPa when comparing with the experimental data. Fatigue scattering is further calculated by using 95% prediction intervals, showing that low fatigue scattering is present at high stresses while a large variation of fatigue life occurs at stresses near the knee point.more » « less
-
Abstract The process instabilities intrinsic to the localized laser-powder bed interaction cause the formation of various defects in laser powder bed fusion (LPBF) additive manufacturing process. Particularly, the stochastic formation of large spatters leads to unpredictable defects in the as-printed parts. Here we report the elimination of large spatters through controlling laser-powder bed interaction instabilities by using nanoparticles. The elimination of large spatters results in 3D printing of defect lean sample with good consistency and enhanced properties. We reveal that two mechanisms work synergistically to eliminate all types of large spatters: (1) nanoparticle-enabled control of molten pool fluctuation eliminates the liquid breakup induced large spatters; (2) nanoparticle-enabled control of the liquid droplet coalescence eliminates liquid droplet colliding induced large spatters. The nanoparticle-enabled simultaneous stabilization of molten pool fluctuation and prevention of liquid droplet coalescence discovered here provide a potential way to achieve defect lean metal additive manufacturing.more » « less
An official website of the United States government
