Abstract Vertically aligned carbon nanofibers (VACNFs) are promising supports for oxygen reduction reaction (ORR) electrocatalysts in fuel cells. Although experimentally these catalytic systems have shown great potential, there is lack of molecular understanding of the catalytic sites and reaction mechanisms. This work investigated the origin of the ORR reactivities of the platinum catalysts on multi‐edged VACNFs (Pt/VACNF) using a multiscale modeling approach combining Density Functional Theory (DFT) and classical Molecular Dynamics (MD) simulations. Based on the ReaxFF potential, all nanoscale Pt particles (Pt55, P100, and Pt147) are stabilized by the open edges located axially along the VACNF walls. The calculated first‐shell coordination numbers,, of surface Pt atoms are 6.63, 7.27, and 7.85, respectively, suggesting that the percentage of low coordination sites increases as the particle size decreases. The adsorption energies of OOH, O, and OH on Pt55were systematically probed using DFT calculations. These adsorption energies retain a linear correlation against the generalized coordination numbers (). For Pt nanoparticles supported on VACNF, we found that the OOH and OH bind stronger than on Pt (111) by 0.14 and 0.17 eV, respectively, which can hinder the ORR activity with lower limiting potential than Pt (111). Our theoretical prediction is in good agreement with the linear sweeping voltammetry that revealed a left shift of the half‐wave potential.
more »
« less
Direct correlation of oxygen adsorption on platinum-electrolyte interfaces with the activity in the oxygen reduction reaction
The oxygen reduction reaction (ORR) on platinum catalysts is essential in fuel cells. Quantitative predictions of the relative ORR activity in experiments, in the range of 1 to 50 times, have remained challenging because of incomplete mechanistic understanding and lack of computational tools to account for the associated small differences in activation energies (<2.3 kilocalories per mole). Using highly accurate molecular dynamics (MD) simulation with the Interface force field (0.1 kilocalories per mole), we elucidated the mechanism of adsorption of molecular oxygen on regular and irregular platinum surfaces and nanostructures, followed by local density functional theory (DFT) calculations. The relative ORR activity is determined by oxygen access to platinum surfaces, which greatly depends on specific water adlayers, while electron transfer occurs at a similar slow rate. The MD methods facilitate quantitative predictions of relative ORR activities of any platinum nanostructures, are applicable to other catalysts, and enable effective MD/DFT approaches.
more »
« less
- PAR ID:
- 10297181
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 7
- Issue:
- 24
- ISSN:
- 2375-2548
- Page Range / eLocation ID:
- eabb1435
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Oxygen reduction reaction (ORR) plays an important role in dictating the performance of various electrochemical energy technologies. As platinum nanoparticles have served as the catalysts of choice towards ORR, minimizing the cost of the catalysts by diminishing the platinum nanoparticle size has become a critical route to advancing the technological development. Herein, first-principle calculations show that carbon-supported Pt 9 clusters represent the threshold domain size, and the ORR activity can be significantly improved by doping of adjacent cobalt atoms. This is confirmed experimentally, where platinum and cobalt are dispersed in nitrogen-doped carbon nanowires in varied forms, single atoms, few-atom clusters, and nanoparticles, depending on the initial feeds. The sample consisting primarily of Pt 2~7 clusters doped with atomic Co species exhibits the best mass activity among the series, with a current density of 4.16 A mg Pt − 1 at +0.85 V vs. RHE that is almost 50 times higher than that of commercial Pt/C.more » « less
-
null (Ed.)Clusters of nitrogen- and carbon-coordinated transition metals dispersed in a carbon matrix (e. g., Fe−N−C) have emerged as an inexpensive class of electrocatalysts for the oxygen reduction reaction (ORR). Here, it was shown that optimizing the interaction between the nitrogen-coordinated transition metal clusters embedded in a more stable and corrosion-resistant carbide matrix yielded an ORR electrocatalyst with enhanced activity and stability compared to Fe−N−C catalysts. Utilizing first-principles calculations, an electrostatics-based descriptor of catalytic activity was identified, and nitrogen-coordinated iron (FeN4) clusters embedded in a TiC matrix were predicted to be an efficient platinum-group metal (PGM)-free ORR electrocatalyst. Guided by theory, selected catalyst formulations were synthesized, and it was demonstrated that the experimentally observed trends in activity fell exactly in line with the descriptor-derived theoretical predictions. The Fe−N−TiC catalyst exhibited enhanced activity (20 %) and durability (3.5-fold improvement) compared to a traditional Fe−N−C catalyst. It was posited that the electrostatics-based descriptor provides a powerful platform for the design of active and stable PGM-free electrocatalysts and heterogenous single-atom catalysts for other electrochemical reactions.more » « less
-
Abstract Clusters of nitrogen‐ and carbon‐coordinated transition metals dispersed in a carbon matrix (e. g., Fe−N−C) have emerged as an inexpensive class of electrocatalysts for the oxygen reduction reaction (ORR). Here, it was shown that optimizing the interaction between the nitrogen‐coordinated transition metal clusters embedded in a more stable and corrosion‐resistant carbide matrix yielded an ORR electrocatalyst with enhanced activity and stability compared to Fe−N−C catalysts. Utilizing first‐principles calculations, an electrostatics‐based descriptor of catalytic activity was identified, and nitrogen‐coordinated iron (FeN4) clusters embedded in a TiC matrix were predicted to be an efficient platinum‐group metal (PGM)‐free ORR electrocatalyst. Guided by theory, selected catalyst formulations were synthesized, and it was demonstrated that the experimentally observed trends in activity fell exactly in line with the descriptor‐derived theoretical predictions. The Fe−N−TiC catalyst exhibited enhanced activity (20 %) and durability (3.5‐fold improvement) compared to a traditional Fe−N−C catalyst. It was posited that the electrostatics‐based descriptor provides a powerful platform for the design of active and stable PGM‐free electrocatalysts and heterogenous single‐atom catalysts for other electrochemical reactions.more » « less
-
Activity, cost, and durability are the trinity of catalysis research for the electrochemical oxygen reduction reaction (ORR). While studies towards increasing activity and reducing cost of ORR catalysts have been carried out extensively, much effort is needed in durability investigation of highly active ORR catalysts. In this work, we examined the stability of a trimetallic PtPdCu catalyst that has demonstrated high activity and incredible durability during ORR using density functional theory (DFT) based computations. Specifically, we studied the processes of dissolution/deposition and diffusion between the surface and inner layer of Cu species of Pt 20 Pd 20 Cu 60 catalysts at electrode potentials up to 1.2 V to understand their role towards stabilizing Pt 20 Pd 20 Cu 60 catalysts. The results show there is a dynamic Cu surface composition range that is dictated by the interplay of the four processes, dissolution, deposition, diffusion from the surface to inner layer, and diffusion from the inner layer to the surface of Cu species, in the stability and observed oscillation of lattice constants of Cu-rich PtPdCu nanoalloys.more » « less
An official website of the United States government

