skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Implementing Reactivity in Molecular Dynamics Simulations with the Interface Force Field (IFF-R) and Other Harmonic Force Fields
The Interface force field (IFF) enables accurate simulations of bulk and interfacial properties of compounds and multiphase materials. However, the simulation of reactions and mechanical properties up to failure remains challenging and expensive. Here we introduce the Reactive Interface Force Field (IFF-R) to analyze bond breaking and failure of complex materials using molecular dynamics simulations. IFF-R uses a Morse potential instead of a harmonic potential as typically employed in molecular dynamics force fields to describe the bond energy, which can render any desired bond reactive by specification of the curve shape of the potential energy and the bond dissociation energy. This facile extension of IFF and other force fields that utilize a harmonic bond energy term allows the description of bond breaking without loss in functionality, accuracy, and speed. The method enables quantitative, on-the-fly computations of bond breaking and stress-strain curves up to failure in any material. We illustrate accurate predictions of mechanical behavior for a variety of material systems, including metals (iron), ceramics (carbon nanotubes), polymers (polyacrylonitrile and cellulose I\b{eta}), and include sample parameters for common bonds based on using experimental and high-level (MP2) quantum mechanical reference data. Computed structures, surface energies, elastic moduli, and tensile strengths are in excellent agreement with available experimental data. Non-reactive properties are shown to be essentially identical to IFF values. Computations are approximately 50 times faster than using ReaxFF and require only a single set of parameters. Compatibility of IFF and IFF-R with biomolecular force fields allows the quantitative analysis of the mechanics of proteins, DNA, and other biological molecules.  more » « less
Award ID(s):
1931587 1940335
PAR ID:
10297187
Author(s) / Creator(s):
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Page Range / eLocation ID:
arXiv:2107.14418
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Graphene-based nanostructures hold immense potential as strong and lightweight materials, however, their mechanical properties such as modulus and strength are difficult to fully exploit due to challenges in atomic-scale engineering. This study presents a database of over 2,000 pristine and defective nanoscale CNT bundles and other graphitic assemblies, inspired by microscopy, with associated stress–strain curves from reactive molecular dynamics (MD) simulations using the reactive INTERFACE force field (IFF-R). These 3D structures, containing up to 80,000 atoms, enable detailed analyses of structure-stiffness-failure relationships. By leveraging the database and physics- and chemistry-informed machine learning (ML), accurate predictions of elastic moduli and tensile strength are demonstrated at speeds 1,000 to 10,000 times faster than efficient MD simulations. Hierarchical Graph Neural Networks with Spatial Information (HS-GNNs) are introduced, which integrate chemistry knowledge. HS-GNNs as well as extreme gradient boosted trees (XGBoost) achieve forecasts of mechanical properties of arbitrary carbon nanostructures with only 3 to 6% mean relative error. The reliability equals experimental accuracy and is up to 20 times higher than other ML methods. Predictions maintain 8 to 18% accuracy for large CNT bundles, CNT junctions, and carbon fiber cross-sections outside the training distribution. The physics- and chemistry-informed HS-GNN works remarkably well for data outside the training range while XGBoost works well with limited training data inside the training range. The carbon nanostructure database is designed for integration with multimodal experimental and simulation data, scalable beyond 100 nm size, and extendable to chemically similar compounds and broader property ranges. The ML approaches have potential for applications in structural materials, nanoelectronics, and carbon-based catalysts. 
    more » « less
  2. Despite growing interest in polymers under extreme conditions, most atomistic molecular dynamics simulations cannot describe the bond scission events underlying failure modes in polymer networks undergoing large strains. In this work, we propose a physics-based machine learning approach that can detect and perform bond breaking with near quantum-chemical accuracy on-the-fly in atomistic simulations. Particularly, we demonstrate that by coarse-graining highly correlated neighboring bonds, the prediction accuracy can be dramatically improved. By comparing with existing quantum mechanics/molecular mechanics methods, our approach is approximately two orders of magnitude more efficient and exhibits improved sensitivity toward rare bond breaking events at low strain. The proposed bond breaking molecular dynamics scheme enables fast and accurate modeling of strain hardening and material failure in polymer networks and can accelerate the design of polymeric materials under extreme conditions. 
    more » « less
  3. We present software infrastructure for the design and testing of new quantum mechanical/molecular mechanical and machine-learning potential (QM/MM−ΔMLP) force fields for a wide range of applications. The software integrates Amber’s molecular dynamics simulation capabilities with fast, approximate quantum models in the xtb package and machine-learning potential corrections in DeePMD-kit. The xtb package implements the recently developed density-functional tight-binding QM models with multipolar electrostatics and density-dependent dispersion (GFN2-xTB), and the interface with Amber enables their use in periodic boundary QM/MM simulations with linear-scaling QM/MM particle-mesh Ewald electrostatics. The accuracy of the semiempirical models is enhanced by including machine-learning correction potentials (ΔMLPs) enabled through an interface with the DeePMD-kit software. The goal of this paper is to present and validate the implementation of this software infrastructure in molecular dynamics and free energy simulations. The utility of the new infrastructure is demonstrated in proof-of-concept example applications. The software elements presented here are open source and freely available. Their interface provides a powerful enabling technology for the design of new QM/MM−ΔMLP models for studying a wide range of problems, including biomolecular reactivity and protein–ligand binding. 
    more » « less
  4. Abstract The earlier integration of validated Lennard–Jones (LJ) potentials for 8 fcc metals into materials and biomolecular force fields has advanced multiple research fields, for example, metal–electrolyte interfaces, recognition of biomolecules, colloidal assembly of metal nanostructures, alloys, and catalysis. Here we introduce 12-6 and 9-6 LJ parameters for classical all-atom simulations of 10 further fcc metals (Ac, Ca (α), Ce (γ), Es (β), Fe (γ), Ir, Rh, Sr (α), Th (α), Yb (β)) and stainless steel. The parameters reproduce lattice constants, surface energies, water interfacial energies, and interactions with (bio)organic molecules in 0.1 to 5% agreement with experiment, as well as qualitative mechanical properties under standard conditions. Deviations are reduced up to a factor of one hundred in comparison to earlier Lennard–Jones parameters, embedded atom models, and density functional theory. We also explain a quantitative correlation between atomization energies from experiments and surface energies that supports parameter development. The models are computationally very efficient and applicable to an exponential space of alloys. Compatibility with a wide range of force fields such as the Interface force field (IFF), AMBER, CHARMM, COMPASS, CVFF, DREIDING, OPLS-AA, and PCFF enables reliable simulations of nanostructures up to millions of atoms and microsecond time scales. User-friendly model building and input generation are available in the CHARMM-GUI Nanomaterial Modeler. As a limitation, deviations in mechanical properties vary and are comparable to DFT methods. We discuss the incorporation of reactivity and features of the electronic structure to expand the range of applications and further increase the accuracy. 
    more » « less
  5. Molybdenum disulfide (MoS 2 ) is a layered material with outstanding electrical and optical properties. Numerous studies evaluate the performance in sensors, catalysts, batteries, and composites that can benefit from guidance by simulations in all-atom resolution. However, molecular simulations remain difficult due to lack of reliable models. We introduce an interpretable force field for MoS 2 with record performance that reproduces structural, interfacial, and mechanical properties in 0.1% to 5% agreement with experiments. The model overcomes structural instability, deviations in interfacial and mechanical properties by several 100%, and empirical fitting protocols in earlier models. It is compatible with several force fields for molecular dynamics simulation, including the interface force field (IFF), CVFF, DREIDING, PCFF, COMPASS, CHARMM, AMBER, and OPLS-AA. The parameters capture polar covalent bonding, X-ray structure, cleavage energy, infrared spectra, bending stability, bulk modulus, Young's modulus, and contact angles with polar and nonpolar solvents. We utilized the models to uncover the binding mechanism of peptides to the MoS 2 basal plane. The binding strength of several 7mer and 8mer peptides scales linearly with surface contact and replacement of surface-bound water molecules, and is tunable in a wide range from −86 to −6 kcal mol −1 . The binding selectivity is multifactorial, including major contributions by van-der-Waals coordination and charge matching of certain side groups, orientation of hydrophilic side chains towards water, and conformation flexibility. We explain the relative attraction and role of the 20 amino acids using computational and experimental data. The force field can be used to screen and interpret the assembly of MoS 2 -based nanomaterials and electrolyte interfaces up to a billion atoms with high accuracy, including multiscale simulations from the quantum scale to the microscale. 
    more » « less