skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluating Multiple Guesses by an Adversary via a Tunable Loss Function
We consider a problem of guessing, wherein an adversary is interested in knowing the value of the realization of a discrete random variable X on observing another correlated random variable Y. The adversary can make multiple (say, k) guesses. The adversary's guessing strategy is assumed to minimize a-loss, a class of tunable loss functions parameterized by a. It has been shown before that this loss function captures well known loss functions including the exponential loss (a = 1/2), the log-loss (a = 1) and the 0–1 loss (a = ∞). We completely characterize the optimal adversarial strategy and the resulting expected α-loss, thereby recovering known results for a = ∞. We define an information leakage measure from the k-guesses setup and derive a condition under which the leakage is unchanged from a single guess.  more » « less
Award ID(s):
1815361 1901243 2007688 2031799
PAR ID:
10297190
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Symposium on Information Theory
Page Range / eLocation ID:
2002 to 2007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A central challenge in password security is to characterize the attacker's guessing curve i.e., what is the probability that the attacker will crack a random user's password within the first G guesses. A key challenge is that the guessing curve depends on the attacker's guessing strategy and the distribution of user passwords both of which are unknown to us. In this work we aim to follow Kerckhoffs's principal and analyze the performance of an optimal attacker who knows the password distribution. Let \lambda_G denote the probability that such an attacker can crack a random user's password within G guesses. We develop several statistically rigorous techniques to upper and lower bound \lambda_G given N independent samples from the unknown password distribution P. We show that our upper/lower bounds on \lambda_G hold with high confidence and we apply our techniques to analyze eight large password datasets. Our empirical analysis shows that even state-of-the-art password cracking models are often significantly less guess efficient than an attacker who can optimize its attack based on its (partial) knowledge of the password distribution. We also apply our statistical tools to re-examine different models of the password distribution i.e., the empirical password distribution and Zipf's Law. We find that the empirical distribution closely matches our upper/lower bounds on \lambda_G when the guessing number G is not too large i.e., G << N. However, for larger values of G our empirical analysis rigorously demonstrates that the empirical distribution (resp. Zipf's Law) overestimates the attacker's success rate. We apply our statistical techniques to upper/lower bound the effectiveness of password throttling mechanisms (key-stretching) which are used to reduce the number of attacker guesses G. Finally, if we are willing to make an additional assumption about the way users respond to password restrictions, we can use our statistical techniques to evaluate the effectiveness of various password composition policies which restrict the passwords that users may select. 
    more » « less
  2. In password security a defender would like to identify and warn users with weak passwords. Similarly, the defender may also want to predict what fraction of passwords would be cracked within B guesses as the attacker’s guessing budget B varies from small (online attacker) to large (offline attacker). Towards each of these goals the defender would like to quickly estimate the guessing number for each user password pwd assuming that the attacker uses a password cracking model M i.e., how many password guesses will the attacker check before s/he cracks each user password pwd. Since naïve brute-force enumeration can be prohibitively expensive when the guessing number is very large, Dell’Amico and Filippone [1] developed an efficient Monte Carlo algorithm to estimate the guessing number of a given password pwd. While Dell’Amico and Filippone proved that their estimator is unbiased there is no guarantee that the Monte Carlo estimates are accurate nor does the method provide confidence ranges on the estimated guessing number or even indicate if/when there is a higher degree of uncertainty.Our contributions are as follows: First, we identify theoretical examples where, with high probability, Monte Carlo Strength estimation produces highly inaccurate estimates of individual guessing numbers as well as the entire guessing curve. Second, we introduce Confident Monte Carlo Strength Estimation as an extension of Dell’Amico and Filippone [1]. Given a password our estimator generates an upper and lower bound with the guarantee that, except with probability δ, the true guessing number lies within the given confidence range. Our techniques can also be used to characterize the attacker’s guessing curve. In particular, given a probabilistic password cracking model M we can generate high confidence upper and lower bounds on the fraction of passwords that the attacker will crack as the guessing budget B varies. 
    more » « less
  3. The best known solutions for k-message broadcast in dynamic networks of size n require Ω(nk) rounds. In this paper, we see if these bounds can be improved by smoothed analysis. To do so, we study perhaps the most natural randomized algorithm for disseminating tokens in this setting: at every time step, choose a token to broadcast randomly from the set of tokens you know. We show that with even a small amount of smoothing (i.e., one random edge added per round), this natural strategy solves k-message broadcast in Õ(n+k³) rounds, with high probability, beating the best known bounds for k = o(√n) and matching the Ω(n+k) lower bound for static networks for k = O(n^{1/3}) (ignoring logarithmic factors). In fact, the main result we show is even stronger and more general: given 𝓁-smoothing (i.e., 𝓁 random edges added per round), this simple strategy terminates in O(kn^{2/3}log^{1/3}(n)𝓁^{-1/3}) rounds. We then prove this analysis close to tight with an almost-matching lower bound. To better understand the impact of smoothing on information spreading, we next turn our attention to static networks, proving a tight bound of Õ(k√n) rounds to solve k-message broadcast, which is better than what our strategy can achieve in the dynamic setting. This confirms the intuition that although smoothed analysis reduces the difficulties induced by changing graph structures, it does not eliminate them altogether. Finally, we apply tools developed to support our smoothed analysis to prove an optimal result for k-message broadcast in so-called well-mixed networks in the absence of smoothing. By comparing this result to an existing lower bound for well-mixed networks, we establish a formal separation between oblivious and strongly adaptive adversaries with respect to well-mixed token spreading, partially resolving an open question on the impact of adversary strength on the k-message broadcast problem. 
    more » « less
  4. We introduce and study the problem of dueling optimization with a monotone adversary, a generalization of (noiseless) dueling convex optimization. The goal is to design an online algorithm to find a minimizer x* for a function f:X→R, for X \subseteq R^d. In each round, the algorithm submits a pair of guesses x1 and x2, and the adversary responds with any point in the space that is at least as good as both guesses. The cost of each query is the suboptimality of the worst of the two guesses; i.e., max(f(x1) − f(x*),f(x2) − f(x*)). The goal is to minimize the number of iterations required to find an ε-optimal point and to minimize the total cost (regret) of the guesses over many rounds. Our main result is an efficient randomized algorithm for several natural choices of the function f and set X that incurs cost O(d) and iteration complexity O(d log(1/ε)^2). Moreover, our dependence on d is asymptotically optimal, as we show examples in which any randomized algorithm for this problem must incur Ω(d) cost and iteration complexity. 
    more » « less
  5. Abstract Traditional approaches to the modeling of multiple‐choice item response data (e.g., 3PL, 4PL models) emphasize slips and guesses as random events. In this paper, an item response model is presented that characterizes both disjunctively interacting guessing and conjunctively interacting slipping processes as proficiency‐related phenomena. We show how evidence for this perspective is seen in the systematic form of invariance violations for item slip and guess parameters under four‐parameter IRT models when compared across populations of different mean proficiency levels. Specifically, higher proficiency populations tend to show higher guess and lower slip probabilities than lower proficiency populations. The results undermine the use of traditional models for IRT applications that require invariance and would suggest greater attention to alternatives. 
    more » « less