skip to main content


Search for: All records

Award ID contains: 2031799

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Properness for supervised losses stipulates that the loss function shapes the learning algorithm towards the true posterior of the data generating distribution. Unfortunately, data in modern machine learning can be corrupted or twisted in many ways. Hence, optimizing a proper loss function on twisted data could perilously lead the learning algorithm towards the twisted posterior, rather than to the desired clean posterior. Many papers cope with specific twists (e.g., label/feature/adversarial noise), but there is a growing need for a unified and actionable understanding atop properness. Our chief theoretical contribution is a generalization of the properness framework with a notion called twist-properness, which delineates loss functions with the ability to "untwist" the twisted posterior into the clean posterior. Notably, we show that a nontrivial extension of a loss function called alpha-loss, which was first introduced in information theory, is twist-proper. We study the twist-proper alpha-loss under a novel boosting algorithm, called PILBoost, and provide formal and experimental results for this algorithm. Our overarching practical conclusion is that the twist-proper alpha-loss outperforms the proper log-loss on several variants of twisted data. 
    more » « less
  2. null (Ed.)
    The minimum mean-square error (MMSE) achievable by optimal estimation of a random variable S given another random variable T is of much interest in a variety of statistical contexts. Motivated by a growing interest in auditing machine learning models for unintended information leakage, we propose a neural network-based estimator of this MMSE. We derive a lower bound for the MMSE based on the proposed estimator and the Barron constant associated with the conditional expectation of S given T . Since the latter is typically unknown in practice, we derive a general bound for the Barron constant that produces order optimal estimates for canonical distribution models. 
    more » « less
  3. null (Ed.)
    We consider a problem of guessing, wherein an adversary is interested in knowing the value of the realization of a discrete random variable X on observing another correlated random variable Y. The adversary can make multiple (say, k) guesses. The adversary's guessing strategy is assumed to minimize a-loss, a class of tunable loss functions parameterized by a. It has been shown before that this loss function captures well known loss functions including the exponential loss (a = 1/2), the log-loss (a = 1) and the 0–1 loss (a = ∞). We completely characterize the optimal adversarial strategy and the resulting expected α-loss, thereby recovering known results for a = ∞. We define an information leakage measure from the k-guesses setup and derive a condition under which the leakage is unchanged from a single guess. 
    more » « less
  4. null (Ed.)