skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learning Data-Driven Drug-Target-Disease Interaction via Neural Tensor Network
Precise medicine recommendations provide more effective treatments and cause fewer drug side effects. A key step is to understand the mechanistic relationships among drugs, targets, and diseases. Tensor-based models have the ability to explore relationships of drug-target-disease based on large amount of labeled data. However, existing tensor models fail to capture complex nonlinear dependencies among tensor data. In addition, rich medical knowledge are far less studied, which may lead to unsatisfied results. Here we propose a Neural Tensor Network (NeurTN) to assist personalized medicine treatments. NeurTN seamlessly combines tensor algebra and deep neural networks, which offers a more powerful way to capture the nonlinear relationships among drugs, targets, and diseases. To leverage medical knowledge, we augment NeurTN with geometric neural networks to capture the structural information of both drugs’ chemical structures and targets’ sequences. Extensive experiments on real-world datasets demonstrate the effectiveness of the NeurTN model.  more » « less
Award ID(s):
2006780 1815139
PAR ID:
10297213
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Joint Conference on Artificial Intelligence (IJCAI)
Page Range / eLocation ID:
3452 to 3458
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lu, Zhiyong (Ed.)
    Abstract MotivationForecasting the synergistic effects of drug combinations facilitates drug discovery and development, especially regarding cancer therapeutics. While numerous computational methods have emerged, most of them fall short in fully modeling the relationships among clinical entities including drugs, cell lines, and diseases, which hampers their ability to generalize to drug combinations involving unseen drugs. These relationships are complex and multidimensional, requiring sophisticated modeling to capture nuanced interplay that can significantly influence therapeutic efficacy. ResultsWe present a novel deep hypergraph learning method named Heterogeneous Entity Representation for MEdicinal Synergy (HERMES) prediction to predict the synergistic effects of anti-cancer drugs. Heterogeneous data sources, including drug chemical structures, gene expression profiles, and disease clinical semantics, are integrated into hypergraph neural networks equipped with a gated residual mechanism to enhance high-order relationship modeling. HERMES demonstrates state-of-the-art performance on two benchmark datasets, significantly outperforming existing methods in predicting the synergistic effects of drug combinations, particularly in cases involving unseen drugs. Availability and implementationThe source code is available at https://github.com/Christina327/HERMES. 
    more » « less
  2. null (Ed.)
    Recommender systems often involve multi-aspect factors. For example, when shopping for shoes online, consumers usually look through their images, ratings, and product's reviews before making their decisions. To learn multi-aspect factors, many context-aware models have been developed based on tensor factorizations. However, existing models assume multilinear structures in the tensor data, thus failing to capture nonlinear feature interactions. To fill this gap, we propose a novel nonlinear tensor machine, which combines deep neural networks and tensor algebra to capture nonlinear interactions among multi-aspect factors. We further consider adversarial learning to assist the training of our model. Extensive experiments demonstrate the effectiveness of the proposed model. 
    more » « less
  3. Taking incompatible multiple drugs together may cause adverse interactions and side effects on the body. Accurate prediction of drug-drug interaction (DDI) events is essential for avoiding this issue. Recently, various artificial intelligence-based approaches have been proposed for predicting DDI events. However, DDI events are associated with complex relationships and mechanisms among drugs, targets, enzymes, transporters, molecular structures, etc. Existing approaches either partially or loosely consider these relationships and mechanisms by a non-end-to-end learning framework, resulting in sub-optimal feature extractions and fusions for prediction. Different from them, this paper proposes a Multimodal Knowledge Graph Fused End-to-end Neural Network (MKGFENN) that consists of two main parts: multimodal knowledge graph (MKG) and fused end-to-end neural network (FENN). First, MKG is constructed by comprehensively exploiting DDI events-associated relationships and mechanisms from four knowledge graphs of drugs-chemical entities, drug-substructures, drugs-drugs, and molecular structures. Correspondingly, a four channels graph neural network is designed to extract high-order and semantic features from MKG. Second, FENN designs a multi-layer perceptron to fuse the extracted features by end-to-end learning. With such designs, the feature extractions and fusions of DDI events are guaranteed to be comprehensive and optimal for prediction. Through extensive experiments on real drug datasets, we demonstrate that MKG-FENN exhibits high accuracy and significantly outperforms state-of-the-art models in predicting DDI events. The source code and supplementary file of this article are available on: https://github.com/wudi1989/MKG-FENN. 
    more » « less
  4. Abstract Background Protein kinases are a large family of druggable proteins that are genomically and proteomically altered in many human cancers. Kinase-targeted drugs are emerging as promising avenues for personalized medicine because of the differential response shown by altered kinases to drug treatment in patients and cell-based assays. However, an incomplete understanding of the relationships connecting genome, proteome and drug sensitivity profiles present a major bottleneck in targeting kinases for personalized medicine. Results In this study, we propose a multi-component Quantitative Structure–Mutation–Activity Relationship Tests (QSMART) model and neural networks framework for providing explainable models of protein kinase inhibition and drug response ( $$\hbox {IC}_{50}$$ IC 50 ) profiles in cell lines. Using non-small cell lung cancer as a case study, we show that interaction terms that capture associations between drugs, pathways, and mutant kinases quantitatively contribute to the response of two EGFR inhibitors (afatinib and lapatinib). In particular, protein–protein interactions associated with the JNK apoptotic pathway, associations between lung development and axon extension, and interaction terms connecting drug substructures and the volume/charge of mutant residues at specific structural locations contribute significantly to the observed $$\hbox {IC}_{50}$$ IC 50 values in cell-based assays. Conclusions By integrating multi-omics data in the QSMART model, we not only predict drug responses in cancer cell lines with high accuracy but also identify features and explainable interaction terms contributing to the accuracy. Although we have tested our multi-component explainable framework on protein kinase inhibitors, it can be extended across the proteome to investigate the complex relationships connecting genotypes and drug sensitivity profiles. 
    more » « less
  5. Drug–target affinity (DTA) prediction is a critical aspect of drug discovery. The meaningful representation of drugs and targets is crucial for accurate prediction. Using 1D string-based representations for drugs and targets is a common approach that has demonstrated good results in drug–target affinity prediction. However, these approach lacks information on the relative position of the atoms and bonds. To address this limitation, graph-based representations have been used to some extent. However, solely considering the structural aspect of drugs and targets may be insufficient for accurate DTA prediction. Integrating the functional aspect of these drugs at the genetic level can enhance the prediction capability of the models. To fill this gap, we propose GramSeq-DTA, which integrates chemical perturbation information with the structural information of drugs and targets. We applied a Grammar Variational Autoencoder (GVAE) for drug feature extraction and utilized two different approaches for protein feature extraction as follows: a Convolutional Neural Network (CNN) and a Recurrent Neural Network (RNN). The chemical perturbation data are obtained from the L1000 project, which provides information on the up-regulation and down-regulation of genes caused by selected drugs. This chemical perturbation information is processed, and a compact dataset is prepared, serving as the functional feature set of the drugs. By integrating the drug, gene, and target features in the model, our approach outperforms the current state-of-the-art DTA prediction models when validated on widely used DTA datasets (BindingDB, Davis, and KIBA). This work provides a novel and practical approach to DTA prediction by merging the structural and functional aspects of biological entities, and it encourages further research in multi-modal DTA prediction. 
    more » « less