This content will become publicly available on March 25, 2025
Taking incompatible multiple drugs together may cause adverse interactions and side effects on the body. Accurate prediction of drug-drug interaction (DDI) events is essential for avoiding this issue. Recently, various artificial intelligence-based approaches have been proposed for predicting DDI events. However, DDI events are associated with complex relationships and mechanisms among drugs, targets, enzymes, transporters, molecular structures, etc. Existing approaches either partially or loosely consider these relationships and mechanisms by a non-end-to-end learning framework, resulting in sub-optimal feature extractions and fusions for prediction. Different from them, this paper proposes a Multimodal Knowledge Graph Fused End-to-end Neural Network (MKGFENN) that consists of two main parts: multimodal knowledge graph (MKG) and fused end-to-end neural network (FENN). First, MKG is constructed by comprehensively exploiting DDI events-associated relationships and mechanisms from four knowledge graphs of drugs-chemical entities, drug-substructures, drugs-drugs, and molecular structures. Correspondingly, a four channels graph neural network is designed to extract high-order and semantic features from MKG. Second, FENN designs a multi-layer perceptron to fuse the extracted features by end-to-end learning. With such designs, the feature extractions and fusions of DDI events are guaranteed to be comprehensive and optimal for prediction. Through extensive experiments on real drug datasets, we demonstrate that MKG-FENN exhibits high accuracy and significantly outperforms state-of-the-art models in predicting DDI events. The source code and supplementary file of this article are available on: https://github.com/wudi1989/MKG-FENN.
more » « less- PAR ID:
- 10512869
- Publisher / Repository:
- AAAI
- Date Published:
- Journal Name:
- Proceedings of the AAAI Conference on Artificial Intelligence
- Volume:
- 38
- Issue:
- 9
- ISSN:
- 2159-5399
- Page Range / eLocation ID:
- 10216 to 10224
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Abstract Background Drug sensitivity prediction and drug responsive biomarker selection on high-throughput genomic data is a critical step in drug discovery. Many computational methods have been developed to serve this purpose including several deep neural network models. However, the modular relations among genomic features have been largely ignored in these methods. To overcome this limitation, the role of the gene co-expression network on drug sensitivity prediction is investigated in this study. Methods In this paper, we first introduce a network-based method to identify representative features for drug response prediction by using the gene co-expression network. Then, two graph-based neural network models are proposed and both models integrate gene network information directly into neural network for outcome prediction. Next, we present a large-scale comparative study among the proposed network-based methods, canonical prediction algorithms (i.e., Elastic Net, Random Forest, Partial Least Squares Regression, and Support Vector Regression), and deep neural network models for drug sensitivity prediction. All the source code and processed datasets in this study are available at https://github.com/compbiolabucf/drug-sensitivity-prediction . Results In the comparison of different feature selection methods and prediction methods on a non-small cell lung cancer (NSCLC) cell line RNA-seq gene expression dataset with 50 different drug treatments, we found that (1) the network-based feature selection method improves the prediction performance compared to Pearson correlation coefficients; (2) Random Forest outperforms all the other canonical prediction algorithms and deep neural network models; (3) the proposed graph-based neural network models show better prediction performance compared to deep neural network model; (4) the prediction performance is drug dependent and it may relate to the drug’s mechanism of action. Conclusions Network-based feature selection method and prediction models improve the performance of the drug response prediction. The relations between the genomic features are more robust and stable compared to the correlation between each individual genomic feature and the drug response in high dimension and low sample size genomic datasets.more » « less
-
Abstract Motivation Accurately predicting drug–target interactions (DTIs) in silico can guide the drug discovery process and thus facilitate drug development. Computational approaches for DTI prediction that adopt the systems biology perspective generally exploit the rationale that the properties of drugs and targets can be characterized by their functional roles in biological networks.
Results Inspired by recent advance of information passing and aggregation techniques that generalize the convolution neural networks to mine large-scale graph data and greatly improve the performance of many network-related prediction tasks, we develop a new nonlinear end-to-end learning model, called NeoDTI, that integrates diverse information from heterogeneous network data and automatically learns topology-preserving representations of drugs and targets to facilitate DTI prediction. The substantial prediction performance improvement over other state-of-the-art DTI prediction methods as well as several novel predicted DTIs with evidence supports from previous studies have demonstrated the superior predictive power of NeoDTI. In addition, NeoDTI is robust against a wide range of choices of hyperparameters and is ready to integrate more drug and target related information (e.g. compound–protein binding affinity data). All these results suggest that NeoDTI can offer a powerful and robust tool for drug development and drug repositioning.
Availability and implementation The source code and data used in NeoDTI are available at: https://github.com/FangpingWan/NeoDTI.
Supplementary information Supplementary data are available at Bioinformatics online.
-
Abstract Background Computational drug repurposing is a cost- and time-efficient approach that aims to identify new therapeutic targets or diseases (indications) of existing drugs/compounds. It is especially critical for emerging and/or orphan diseases due to its cheaper investment and shorter research cycle compared with traditional wet-lab drug discovery approaches. However, the underlying mechanisms of action (MOAs) between repurposed drugs and their target diseases remain largely unknown, which is still a main obstacle for computational drug repurposing methods to be widely adopted in clinical settings.
Results In this work, we propose KGML-xDTD: a Knowledge Graph–based Machine Learning framework for explainably predicting Drugs Treating Diseases. It is a 2-module framework that not only predicts the treatment probabilities between drugs/compounds and diseases but also biologically explains them via knowledge graph (KG) path-based, testable MOAs. We leverage knowledge-and-publication–based information to extract biologically meaningful “demonstration paths” as the intermediate guidance in the Graph-based Reinforcement Learning (GRL) path-finding process. Comprehensive experiments and case study analyses show that the proposed framework can achieve state-of-the-art performance in both predictions of drug repurposing and recapitulation of human-curated drug MOA paths.
Conclusions KGML-xDTD is the first model framework that can offer KG path explanations for drug repurposing predictions by leveraging the combination of prediction outcomes and existing biological knowledge and publications. We believe it can effectively reduce “black-box” concerns and increase prediction confidence for drug repurposing based on predicted path-based explanations and further accelerate the process of drug discovery for emerging diseases.
-
Abstract Recent advances and achievements of artificial intelligence (AI) as well as deep and graph learning models have established their usefulness in biomedical applications, especially in drug–drug interactions (DDIs). DDIs refer to a change in the effect of one drug to the presence of another drug in the human body, which plays an essential role in drug discovery and clinical research. DDIs prediction through traditional clinical trials and experiments is an expensive and time-consuming process. To correctly apply the advanced AI and deep learning, the developer and user meet various challenges such as the availability and encoding of data resources, and the design of computational methods. This review summarizes chemical structure based, network based, natural language processing based and hybrid methods, providing an updated and accessible guide to the broad researchers and development community with different domain knowledge. We introduce widely used molecular representation and describe the theoretical frameworks of graph neural network models for representing molecular structures. We present the advantages and disadvantages of deep and graph learning methods by performing comparative experiments. We discuss the potential technical challenges and highlight future directions of deep and graph learning models for accelerating DDIs prediction.
-
null (Ed.)
Precise medicine recommendations provide more effective treatments and cause fewer drug side effects. A key step is to understand the mechanistic relationships among drugs, targets, and diseases. Tensor-based models have the ability to explore relationships of drug-target-disease based on large amount of labeled data. However, existing tensor models fail to capture complex nonlinear dependencies among tensor data. In addition, rich medical knowledge are far less studied, which may lead to unsatisfied results. Here we propose a Neural Tensor Network (NeurTN) to assist personalized medicine treatments. NeurTN seamlessly combines tensor algebra and deep neural networks, which offers a more powerful way to capture the nonlinear relationships among drugs, targets, and diseases. To leverage medical knowledge, we augment NeurTN with geometric neural networks to capture the structural information of both drugs’ chemical structures and targets’ sequences. Extensive experiments on real-world datasets demonstrate the effectiveness of the NeurTN model.