skip to main content


Title: Private and Resource-Bounded Locally Decodable Codes for Insertions and Deletions
We construct locally decodable codes (LDCs) to correct insertion-deletion errors in the setting where the sender and receiver share a secret key or where the channel is resource-bounded. Our constructions rely on a so-called ``Hamming-to-InsDel'' compiler (Ostrovsky and Paskin-Cherniavsky, ITS '15 \& Block et al., FSTTCS '20), which compiles any locally decodable Hamming code into a locally decodable code resilient to insertion-deletion (InsDel) errors. While the compilers were designed for the classical coding setting, we show that the compilers still work in a secret key or resource-bounded setting. Applying our results to the private key Hamming LDC of Ostrovsky, Pandey, and Sahai (ICALP '07), we obtain a private key InsDel LDC with constant rate and polylogarithmic locality. Applying our results to the construction of Blocki, Kulkarni, and Zhou (ITC '20), we obtain similar results for resource-bounded channels; i.e., a channel where computation is constrained by resources such as space or time.  more » « less
Award ID(s):
1910659
NSF-PAR ID:
10297270
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Relaxed Locally Correctable Codes in Computationally Bounded Channels
Page Range / eLocation ID:
1841 to 1846
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Locally Decodable Codes (LDCs) are error-correcting codes for which individual message symbols can be quickly recovered despite errors in the codeword. LDCs for Hamming errors have been studied extensively in the past few decades, where a major goal is to understand the amount of redundancy that is necessary and sufficient to decode from large amounts of error, with small query complexity. Despite exciting progress, we still don't have satisfactory answers in several important parameter regimes. For example, in the case of 3-query LDCs, the gap between existing constructions and lower bounds is superpolynomial in the message length. In this work we study LDCs for insertion and deletion errors, called Insdel LDCs. Their study was initiated by Ostrovsky and Paskin-Cherniavsky (Information Theoretic Security, 2015), who gave a reduction from Hamming LDCs to Insdel LDCs with a small blowup in the code parameters. On the other hand, the only known lower bounds for Insdel LDCs come from those for Hamming LDCs, thus there is no separation between them. Here we prove new, strong lower bounds for the existence of Insdel LDCs. In particular, we show that 2-query linear Insdel LDCs do not exist, and give an exponential lower bound for the length of all q-query Insdel LDCs with constant q. For q ≥ 3 our bounds are exponential in the existing lower bounds for Hamming LDCs. Furthermore, our exponential lower bounds continue to hold for adaptive decoders, and even in private-key settings where the encoder and decoder share secret randomness. This exhibits a strict separation between Hamming LDCs and Insdel LDCs. Our strong lower bounds also hold for the related notion of Insdel LCCs (except in the private-key setting), due to an analogue to the Insdel notions of a reduction from Hamming LCCs to LDCs. Our techniques are based on a delicate design and analysis of hard distributions of insertion and deletion errors, which depart significantly from typical techniques used in analyzing Hamming LDCs. 
    more » « less
  2. Ta-Shma, Amnon (Ed.)
    Locally Decodable Codes (LDCs) are error-correcting codes C:Σⁿ → Σ^m, encoding messages in Σⁿ to codewords in Σ^m, with super-fast decoding algorithms. They are important mathematical objects in many areas of theoretical computer science, yet the best constructions so far have codeword length m that is super-polynomial in n, for codes with constant query complexity and constant alphabet size. In a very surprising result, Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan (SICOMP 2006) show how to construct a relaxed version of LDCs (RLDCs) with constant query complexity and almost linear codeword length over the binary alphabet, and used them to obtain significantly-improved constructions of Probabilistically Checkable Proofs. In this work, we study RLDCs in the standard Hamming-error setting, and introduce their variants in the insertion and deletion (Insdel) error setting. Standard LDCs for Insdel errors were first studied by Ostrovsky and Paskin-Cherniavsky (Information Theoretic Security, 2015), and are further motivated by recent advances in DNA random access bio-technologies. Our first result is an exponential lower bound on the length of Hamming RLDCs making 2 queries (even adaptively), over the binary alphabet. This answers a question explicitly raised by Gur and Lachish (SICOMP 2021) and is the first exponential lower bound for RLDCs. Combined with the results of Ben-Sasson et al., our result exhibits a "phase-transition"-type behavior on the codeword length for some constant-query complexity. We achieve these lower bounds via a transformation of RLDCs to standard Hamming LDCs, using a careful analysis of restrictions of message bits that fix codeword bits. We further define two variants of RLDCs in the Insdel-error setting, a weak and a strong version. On the one hand, we construct weak Insdel RLDCs with almost linear codeword length and constant query complexity, matching the parameters of the Hamming variants. On the other hand, we prove exponential lower bounds for strong Insdel RLDCs. These results demonstrate that, while these variants are equivalent in the Hamming setting, they are significantly different in the insdel setting. Our results also prove a strict separation between Hamming RLDCs and Insdel RLDCs. 
    more » « less
  3. Error-correcting codes that admit {\em local} decoding and correcting algorithms have been the focus of much recent research due to their numerous theoretical and practical applications. An important goal is to obtain the best possible tradeoffs between the number of queries the algorithm makes to its oracle (the {\em locality} of the task), and the amount of redundancy in the encoding (the {\em information rate}). In Hamming's classical adversarial channel model, the current tradeoffs are dramatic, allowing either small locality, but superpolynomial blocklength, or small blocklength, but high locality. However, in the computationally bounded, adversarial channel model, proposed by Lipton (STACS 1994), constructions of locally decodable codes suddenly exhibit small locality and small blocklength, but these constructions require strong trusted setup assumptions e.g., Ostrovsky, Pandey and Sahai (ICALP 2007) construct private locally decodable codes in the setting where the sender and receiver already share a symmetric key. We study variants of locally decodable and locally correctable codes in computationally bounded, adversarial channels, in a setting with no public-key or private-key cryptographic setup. The only setup assumption we require is the selection of the {\em public} parameters (seed) for a collision-resistant hash function. Specifically, we provide constructions of {\em relaxed locally correctable} and {\em relaxed locally decodable codes} over the binary alphabet, with constant information rate, and poly-logarithmic locality. Our constructions, which compare favorably with their classical analogues in the computationally unbounded Hamming channel, crucially employ {\em collision-resistant hash functions} and {\em local expander graphs}, extending ideas from recent cryptographic constructions of memory-hard functions. 
    more » « less
  4. We revisit computationally relaxed locally decodable codes (crLDCs) (Blocki et al., Trans. Inf. Theory ’21) and give two new constructions. Our first construction is a Hamming crLDC that is conceptually simpler than prior constructions, leveraging digital signature schemes and an appropriately chosen Hamming code. Our second construction is an extension of our Hamming crLDC to handle insertion-deletion (InsDel) errors, yielding an InsDel crLDC. This extension crucially relies on the noisy binary search techniques of Block et al. (FSTTCS ’20) to handle InsDel errors. Both crLDC constructions have binary codeword alphabets, are resilient to a constant fraction of Hamming and InsDel errors, respectively, and under suitable parameter choices have poly-logarithmic locality and encoding length linear in the message length and polynomial in the security parameter. These parameters compare favorably to prior constructions in the poly-logarithmic locality regime. 
    more » « less
  5. Yael Tauman Kalai and Adam D. Smith and Daniel Wichs (Ed.)
    Constructions of locally decodable codes (LDCs) have one of two undesirable properties: low rate or high locality (polynomial in the length of the message). In settings where the encoder/decoder have already exchanged cryptographic keys and the channel is a probabilistic polynomial time (PPT) algorithm, it is possible to circumvent these barriers and design LDCs with constant rate and small locality. However, the assumption that the encoder/decoder have exchanged cryptographic keys is often prohibitive. We thus consider the problem of designing explicit and efficient LDCs in settings where the channel is slightly more constrained than the encoder/decoder with respect to some resource e.g., space or (sequential) time. Given an explicit function f that the channel cannot compute, we show how the encoder can transmit a random secret key to the local decoder using f(⋅) and a random oracle 𝖧(⋅). We then bootstrap the private key LDC construction of Ostrovsky, Pandey and Sahai (ICALP, 2007), thereby answering an open question posed by Guruswami and Smith (FOCS 2010) of whether such bootstrapping techniques are applicable to LDCs in channel models weaker than just PPT algorithms. Specifically, in the random oracle model we show how to construct explicit constant rate LDCs with locality of polylog in the security parameter against various resource constrained channels. 
    more » « less