skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1910659

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Meka, Raghu (Ed.)
    Differential privacy and sublinear algorithms are both rapidly emerging algorithmic themes in times of big data analysis. Although recent works have shown the existence of differentially private sublinear algorithms for many problems including graph parameter estimation and clustering, little is known regarding hardness results on these algorithms. In this paper, we initiate the study of lower bounds for problems that aim for both differentially-private and sublinear-time algorithms. Our main result is the incompatibility of both the desiderata in the general case. In particular, we prove that a simple problem based on one-way marginals yields both a differentially-private algorithm, as well as a sublinear-time algorithm, but does not admit a "strictly" sublinear-time algorithm that is also differentially private. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. We revisit computationally relaxed locally decodable codes (crLDCs) (Blocki et al., Trans. Inf. Theory ’21) and give two new constructions. Our first construction is a Hamming crLDC that is conceptually simpler than prior constructions, leveraging digital signature schemes and an appropriately chosen Hamming code. Our second construction is an extension of our Hamming crLDC to handle insertion-deletion (InsDel) errors, yielding an InsDel crLDC. This extension crucially relies on the noisy binary search techniques of Block et al. (FSTTCS ’20) to handle InsDel errors. Both crLDC constructions have binary codeword alphabets, are resilient to a constant fraction of Hamming and InsDel errors, respectively, and under suitable parameter choices have poly-logarithmic locality and encoding length linear in the message length and polynomial in the security parameter. These parameters compare favorably to prior constructions in the poly-logarithmic locality regime. 
    more » « less
  3. The data management of large companies often prioritize more recent data, as a source of higher accuracy prediction than outdated data. For example, the Facebook data policy retains user search histories for months while the Google data retention policy states that browser information may be stored for up to months. These policies are captured by the sliding window model, in which only the most recent statistics form the underlying dataset. In this paper, we consider the problem of privately releasing the L2-heavy hitters in the sliding window model, which include Lp-heavy hitters for p<=2 and in some sense are the strongest possible guarantees that can be achieved using polylogarithmic space, but cannot be handled by existing techniques due to the sub-additivity of the L2 norm. Moreover, existing non-private sliding window algorithms use the smooth histogram framework, which has high sensitivity. To overcome these barriers, we introduce the first differentially private algorithm for L2-heavy hitters in the sliding window model by initiating a number of L2-heavy hitter algorithms across the stream with significantly lower threshold. Similarly, we augment the algorithms with an approximate frequency tracking algorithm with significantly higher accuracy. We then use smooth sensitivity and statistical distance arguments to show that we can add noise proportional to an estimation of the norm. To the best of our knowledge, our techniques are the first to privately release statistics that are related to a sub-additive function in the sliding window model, and may be of independent interest to future differentially private algorithmic design in the sliding window model. 
    more » « less
  4. Ta-Shma, Amnon (Ed.)
    Locally Decodable Codes (LDCs) are error-correcting codes C:Σⁿ → Σ^m, encoding messages in Σⁿ to codewords in Σ^m, with super-fast decoding algorithms. They are important mathematical objects in many areas of theoretical computer science, yet the best constructions so far have codeword length m that is super-polynomial in n, for codes with constant query complexity and constant alphabet size. In a very surprising result, Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan (SICOMP 2006) show how to construct a relaxed version of LDCs (RLDCs) with constant query complexity and almost linear codeword length over the binary alphabet, and used them to obtain significantly-improved constructions of Probabilistically Checkable Proofs. In this work, we study RLDCs in the standard Hamming-error setting, and introduce their variants in the insertion and deletion (Insdel) error setting. Standard LDCs for Insdel errors were first studied by Ostrovsky and Paskin-Cherniavsky (Information Theoretic Security, 2015), and are further motivated by recent advances in DNA random access bio-technologies. Our first result is an exponential lower bound on the length of Hamming RLDCs making 2 queries (even adaptively), over the binary alphabet. This answers a question explicitly raised by Gur and Lachish (SICOMP 2021) and is the first exponential lower bound for RLDCs. Combined with the results of Ben-Sasson et al., our result exhibits a "phase-transition"-type behavior on the codeword length for some constant-query complexity. We achieve these lower bounds via a transformation of RLDCs to standard Hamming LDCs, using a careful analysis of restrictions of message bits that fix codeword bits. We further define two variants of RLDCs in the Insdel-error setting, a weak and a strong version. On the one hand, we construct weak Insdel RLDCs with almost linear codeword length and constant query complexity, matching the parameters of the Hamming variants. On the other hand, we prove exponential lower bounds for strong Insdel RLDCs. These results demonstrate that, while these variants are equivalent in the Hamming setting, they are significantly different in the insdel setting. Our results also prove a strict separation between Hamming RLDCs and Insdel RLDCs. 
    more » « less