skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Relaxed Locally Correctable Codes in Computationally Bounded Channels*
Error-correcting codes that admit {\em local} decoding and correcting algorithms have been the focus of much recent research due to their numerous theoretical and practical applications. An important goal is to obtain the best possible tradeoffs between the number of queries the algorithm makes to its oracle (the {\em locality} of the task), and the amount of redundancy in the encoding (the {\em information rate}). In Hamming's classical adversarial channel model, the current tradeoffs are dramatic, allowing either small locality, but superpolynomial blocklength, or small blocklength, but high locality. However, in the computationally bounded, adversarial channel model, proposed by Lipton (STACS 1994), constructions of locally decodable codes suddenly exhibit small locality and small blocklength, but these constructions require strong trusted setup assumptions e.g., Ostrovsky, Pandey and Sahai (ICALP 2007) construct private locally decodable codes in the setting where the sender and receiver already share a symmetric key. We study variants of locally decodable and locally correctable codes in computationally bounded, adversarial channels, in a setting with no public-key or private-key cryptographic setup. The only setup assumption we require is the selection of the {\em public} parameters (seed) for a collision-resistant hash function. Specifically, we provide constructions of {\em relaxed locally correctable} and {\em relaxed locally decodable codes} over the binary alphabet, with constant information rate, and poly-logarithmic locality. Our constructions, which compare favorably with their classical analogues in the computationally unbounded Hamming channel, crucially employ {\em collision-resistant hash functions} and {\em local expander graphs}, extending ideas from recent cryptographic constructions of memory-hard functions.  more » « less
Award ID(s):
1755708
PAR ID:
10092900
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Relaxed Locally Correctable Codes in Computationally Bounded Channels
Page Range / eLocation ID:
2414 to 2418
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We construct locally decodable codes (LDCs) to correct insertion-deletion errors in the setting where the sender and receiver share a secret key or where the channel is resource-bounded. Our constructions rely on a so-called ``Hamming-to-InsDel'' compiler (Ostrovsky and Paskin-Cherniavsky, ITS '15 \& Block et al., FSTTCS '20), which compiles any locally decodable Hamming code into a locally decodable code resilient to insertion-deletion (InsDel) errors. While the compilers were designed for the classical coding setting, we show that the compilers still work in a secret key or resource-bounded setting. Applying our results to the private key Hamming LDC of Ostrovsky, Pandey, and Sahai (ICALP '07), we obtain a private key InsDel LDC with constant rate and polylogarithmic locality. Applying our results to the construction of Blocki, Kulkarni, and Zhou (ITC '20), we obtain similar results for resource-bounded channels; i.e., a channel where computation is constrained by resources such as space or time. 
    more » « less
  2. We formally introduce, define, and construct {\em memory-hard puzzles}. Intuitively, for a difficulty parameter $$t$$, a cryptographic puzzle is memory-hard if any parallel random access machine (PRAM) algorithm with ``small'' cumulative memory complexity ($$\ll t^2$$) cannot solve the puzzle; moreover, such puzzles should be both ``easy'' to generate and be solvable by a sequential RAM algorithm running in time $$t$$. Our definitions and constructions of memory-hard puzzles are in the standard model, assuming the existence of indistinguishability obfuscation (\iO) and one-way functions (OWFs), and additionally assuming the existence of a {\em memory-hard language}. Intuitively, a language is memory-hard if it is undecidable by any PRAM algorithm with ``small'' cumulative memory complexity, while a sequential RAM algorithm running in time $$t$$ can decide the language. Our definitions and constructions of memory-hard objects are the first such definitions and constructions in the standard model without relying on idealized assumptions (such as random oracles). We give two applications which highlight the utility of memory-hard puzzles. For our first application, we give a construction of a (one-time) {\em memory-hard function} (MHF) in the standard model, using memory-hard puzzles and additionally assuming \iO and OWFs. For our second application, we show any cryptographic puzzle (\eg, memory-hard, time-lock) can be used to construct {\em resource-bounded locally decodable codes} (LDCs) in the standard model, answering an open question of Blocki, Kulkarni, and Zhou (ITC 2020). Resource-bounded LDCs achieve better rate and locality than their classical counterparts under the assumption that the adversarial channel is resource bounded (e.g., a low-depth circuit). Prior constructions of MHFs and resource-bounded LDCs required idealized primitives like random oracles. 
    more » « less
  3. Yael Tauman Kalai and Adam D. Smith and Daniel Wichs (Ed.)
    Constructions of locally decodable codes (LDCs) have one of two undesirable properties: low rate or high locality (polynomial in the length of the message). In settings where the encoder/decoder have already exchanged cryptographic keys and the channel is a probabilistic polynomial time (PPT) algorithm, it is possible to circumvent these barriers and design LDCs with constant rate and small locality. However, the assumption that the encoder/decoder have exchanged cryptographic keys is often prohibitive. We thus consider the problem of designing explicit and efficient LDCs in settings where the channel is slightly more constrained than the encoder/decoder with respect to some resource e.g., space or (sequential) time. Given an explicit function f that the channel cannot compute, we show how the encoder can transmit a random secret key to the local decoder using f(⋅) and a random oracle 𝖧(⋅). We then bootstrap the private key LDC construction of Ostrovsky, Pandey and Sahai (ICALP, 2007), thereby answering an open question posed by Guruswami and Smith (FOCS 2010) of whether such bootstrapping techniques are applicable to LDCs in channel models weaker than just PPT algorithms. Specifically, in the random oracle model we show how to construct explicit constant rate LDCs with locality of polylog in the security parameter against various resource constrained channels. 
    more » « less
  4. We revisit computationally relaxed locally decodable codes (crLDCs) (Blocki et al., Trans. Inf. Theory ’21) and give two new constructions. Our first construction is a Hamming crLDC that is conceptually simpler than prior constructions, leveraging digital signature schemes and an appropriately chosen Hamming code. Our second construction is an extension of our Hamming crLDC to handle insertion-deletion (InsDel) errors, yielding an InsDel crLDC. This extension crucially relies on the noisy binary search techniques of Block et al. (FSTTCS ’20) to handle InsDel errors. Both crLDC constructions have binary codeword alphabets, are resilient to a constant fraction of Hamming and InsDel errors, respectively, and under suitable parameter choices have poly-logarithmic locality and encoding length linear in the message length and polynomial in the security parameter. These parameters compare favorably to prior constructions in the poly-logarithmic locality regime. 
    more » « less
  5. Recent efforts in coding theory have focused on building codes for insertions and deletions, called insdel codes, with optimal trade-offs between their redundancy and their error-correction capabilities, as well as {\em efficient} encoding and decoding algorithms. In many applications, polynomial running time may still be prohibitively expensive, which has motivated the study of codes with {\em super-efficient} decoding algorithms. These have led to the well-studied notions of Locally Decodable Codes (LDCs) and Locally Correctable Codes (LCCs). Inspired by these notions, Ostrovsky and Paskin-Cherniavsky (Information Theoretic Security, 2015) generalized Hamming LDCs to insertions and deletions. To the best of our knowledge, these are the only known results that study the analogues of Hamming LDCs in channels performing insertions and deletions. Here we continue the study of insdel codes that admit local algorithms. Specifically, we reprove the results of Ostrovsky and Paskin-Cherniavsky for insdel LDCs using a different set of techniques. We also observe that the techniques extend to constructions of LCCs. Specifically, we obtain insdel LDCs and LCCs from their Hamming LDCs and LCCs analogues, respectively. The rate and error-correction capability blow up only by a constant factor, while the query complexity blows up by a poly log factor in the block length. Since insdel locally decodable/correctble codes are scarcely studied in the literature, we believe our results and techniques may lead to further research. In particular, we conjecture that constant-query insdel LDCs/LCCs do not exist. 
    more » « less