skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: A universal quantum gate set for transmon qubits with strong ZZ interactions
High-fidelity single- and two-qubit gates are essential building blocks for a fault-tolerant quantum computer. While there has been much progress in suppressing single-qubit gate errors in superconducting qubit systems, two-qubit gates still suffer from error rates that are orders of magnitude higher. One limiting factor is the residual ZZ-interaction, which originates from a coupling between computational states and higher-energy states. While this interaction is usually viewed as a nuisance, here we experimentally demonstrate that it can be exploited to produce a universal set of fast single- and two-qubit entangling gates in a coupled transmon qubit system. To implement arbitrary single-qubit rotations, we design a new protocol called the two-axis gate that is based on a three-part composite pulse. It rotates a single qubit independently of the state of the other qubit despite the strong ZZ-coupling. We achieve single-qubit gate fidelities as high as 99.1% from randomized benchmarking measurements. We then demonstrate both a CZ gate and a CNOT gate. Because the system has a strong ZZ-interaction, a CZ gate can be achieved by letting the system freely evolve for a gate time tg=53.8 ns. To design the CNOT gate, we utilize an analytical microwave pulse shape based on the SWIPHT protocol for realizing fast, low-leakage gates. We obtain fidelities of 94.6% and 97.8% for the CNOT and CZ gates respectively from quantum progress tomography.  more » « less
Award ID(s):
1839232
NSF-PAR ID:
10297299
Author(s) / Creator(s):
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Page Range / eLocation ID:
2103.12305
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. High-fidelity gate operations are essential to the realization of a fault-tolerant quantum computer. In addition, the physical resources required to implement gates must scale efficiently with system size. A longstanding goal of the superconducting qubit community is the tight integration of a superconducting quantum circuit with a proximal classical cryogenic control system. Here we implement coherent control of a superconducting transmon qubit using a Single Flux Quantum (SFQ) pulse driver cofabricated on the qubit chip. The pulse driver delivers trains of quantized flux pulses to the qubit through a weak capacitive coupling; coherent rotations of the qubit state are realized when the pulse-to-pulse timing is matched to a multiple of the qubit oscillation period. We measure the fidelity of SFQ-based gates to be ~95% using interleaved randomized benchmarking. Gate fidelities are limited by quasiparticle generation in the dissipative SFQ driver. We characterize the dissipative and dispersive contributions of the quasiparticle admittance and discuss mitigation strategies to suppress quasiparticle poisoning. These results open the door to integration of large-scale superconducting qubit arrays with SFQ control elements for low-latency feedback and stabilization. 
    more » « less
  2. Abstract

    Suppressing errors is the central challenge for useful quantum computing1, requiring quantum error correction (QEC)2–6for large-scale processing. However, the overhead in the realization of error-corrected ‘logical’ qubits, in which information is encoded across many physical qubits for redundancy2–4, poses substantial challenges to large-scale logical quantum computing. Here we report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits. Using logical-level control and a zoned architecture in reconfigurable neutral-atom arrays7, our system combines high two-qubit gate fidelities8, arbitrary connectivity7,9, as well as fully programmable single-qubit rotations and mid-circuit readout10–15. Operating this logical processor with various types of encoding, we demonstrate improvement of a two-qubit logic gate by scaling surface-code6distance fromd = 3 tod = 7, preparation of colour-code qubits with break-even fidelities5, fault-tolerant creation of logical Greenberger–Horne–Zeilinger (GHZ) states and feedforward entanglement teleportation, as well as operation of 40 colour-code qubits. Finally, using 3D [[8,3,2]] code blocks16,17, we realize computationally complex sampling circuits18with up to 48 logical qubits entangled with hypercube connectivity19with 228 logical two-qubit gates and 48 logical CCZ gates20. We find that this logical encoding substantially improves algorithmic performance with error detection, outperforming physical-qubit fidelities at both cross-entropy benchmarking and quantum simulations of fast scrambling21,22. These results herald the advent of early error-corrected quantum computation and chart a path towards large-scale logical processors.

     
    more » « less
  3. Molecular qubits are an emerging platform in quantum information science (QIS) due to the unmatched structural control that chemical design and synthesis provide compared to other leading qubit technologies. This theoretical study investigates pulse sequence protocols for spin-correlated radical pairs (SCRPs), which are important molecular spin qubit pair (SQP) candidates. Here, we introduce improved microwave pulse protocols for enhancing the execution times of quantum logic gates based on SQPs. Signi ficantly, this study demonstrates that the proposed pulse sequences selectively remove certain contributions from nuclear spin effects on spin dynamics, which are a common source of decoherence. Additionally, we have analyzed the factors that control the fidelity of the SQP spin state following application of the CNOT gate. It was found that higher magnetic fi elds introduce a high frequency oscillation in the fidelity. Thereupon, it is suggested that further research should be geared towards executing quantum gates at lower magnetic field values. In addition, an absolute bound of the fidelity outcome due to decoherence is determined, which clearly identifies the important factors that control gate execution. Finally, examples of the application of these pulse sequences to SQPs are described. 
    more » « less
  4. The speed of elementary quantum gates, particularly two-qubit entangling gates, ultimately sets the limit on the speed at which quantum circuits can operate. In this work, we demonstrate experimentally two-qubit entangling gates at nearly the fastest possible speed allowed by the physical interaction strength between two superconducting transmon qubits. We achieve this quantum speed limit by implementing experimental gates designed using a machine learning inspired optimal control method. Importantly, our method only requires the single-qubit drive strength to be moderately larger than the interaction strength to achieve an arbitrary entangling gate close to its analytical speed limit with high fidelity. Thus, the method is applicable to a variety of platforms including those with comparable single-qubit and two-qubit gate speeds, or those with always-on interactions. 
    more » « less
  5. Abstract

    The ability to perform entangling quantum operations with low error rates in a scalable fashion is a central element of useful quantum information processing1. Neutral-atom arrays have recently emerged as a promising quantum computing platform, featuring coherent control over hundreds of qubits2,3and any-to-any gate connectivity in a flexible, dynamically reconfigurable architecture4. The main outstanding challenge has been to reduce errors in entangling operations mediated through Rydberg interactions5. Here we report the realization of two-qubit entangling gates with 99.5% fidelity on up to 60 atoms in parallel, surpassing the surface-code threshold for error correction6,7. Our method uses fast, single-pulse gates based on optimal control8, atomic dark states to reduce scattering9and improvements to Rydberg excitation and atom cooling. We benchmark fidelity using several methods based on repeated gate applications10,11, characterize the physical error sources and outline future improvements. Finally, we generalize our method to design entangling gates involving a higher number of qubits, which we demonstrate by realizing low-error three-qubit gates12,13. By enabling high-fidelity operation in a scalable, highly connected system, these advances lay the groundwork for large-scale implementation of quantum algorithms14, error-corrected circuits7and digital simulations15.

     
    more » « less