skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Title: Shuffles and Circuits
We introduce an abstract and strong model of massively parallel computation, where essentially the only restrictions are that the “fan-in” of each machine is limited to s bits, where s is smaller than the input size n, and that computation proceeds in synchronized rounds, with no communication between different machines within a round. Lower bounds on round complexity in this model apply to every computing platform that shares the most basic design principles of MapReduce-type systems. We apply a variant of the “polynomial method” to capture restrictions obeyed by all such massively parallel computations. This connection allows us to translate a lower bound on the (approximate) polynomial degree of a Boolean function to a lower bound on the round complexity of every (randomized) massively parallel computation of that function. These lower bounds apply even in the “unbounded width” version of our model, where the number of machines can be arbitrarily large. As one example of our general results, computing any non-trivial monotone graph property — such as any of the standard connectivity problems — requires a super-constant number of rounds when every machine can accept only a sub-polynomial (in n) number of input bits s. This lower bound constitutes significant progress on a major open question in the area,  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of the ACM
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Motivated by the increasing need to understand the distributed algorithmic foundations of large-scale graph computations, we study some fundamental graph problems in a message-passing model for distributed computing where k ≥ 2 machines jointly perform computations on graphs with n nodes (typically, n >> k). The input graph is assumed to be initially randomly partitioned among the k machines, a common implementation in many real-world systems. Communication is point-to-point, and the goal is to minimize the number of communication rounds of the computation. Our main contribution is the General Lower Bound Theorem , a theorem that can be used to show non-trivial lower bounds on the round complexity of distributed large-scale data computations. This result is established via an information-theoretic approach that relates the round complexity to the minimal amount of information required by machines to solve the problem. Our approach is generic, and this theorem can be used in a “cookbook” fashion to show distributed lower bounds for several problems, including non-graph problems. We present two applications by showing (almost) tight lower bounds on the round complexity of two fundamental graph problems, namely, PageRank computation and triangle enumeration . These applications show that our approach can yield lower bounds for problems where the application of communication complexity techniques seems not obvious or gives weak bounds, including and especially under a stochastic partition of the input. We then present distributed algorithms for PageRank and triangle enumeration with a round complexity that (almost) matches the respective lower bounds; these algorithms exhibit a round complexity that scales superlinearly in k , improving significantly over previous results [Klauck et al., SODA 2015]. Specifically, we show the following results: PageRank: We show a lower bound of Ὼ(n/k 2 ) rounds and present a distributed algorithm that computes an approximation of the PageRank of all the nodes of a graph in Õ(n/k 2 ) rounds. Triangle enumeration: We show that there exist graphs with m edges where any distributed algorithm requires Ὼ(m/k 5/3 ) rounds. This result also implies the first non-trivial lower bound of Ὼ(n 1/3 ) rounds for the congested clique model, which is tight up to logarithmic factors. We then present a distributed algorithm that enumerates all the triangles of a graph in Õ(m/k 5/3 + n/k 4/3 ) rounds. 
    more » « less
  2. Over the last two decades, frameworks for distributed-memory parallel computation, such as MapReduce, Hadoop, Spark and Dryad, have gained significant popularity with the growing prevalence of large network datasets. The Massively Parallel Computation (MPC) model is the de-facto standard for studying graph algorithms in these frameworks theoretically. Subgraph counting is one such fundamental problem in analyzing massive graphs, with the main algorithmic challenges centering on designing methods which are both scalable and accurate. Given a graph G = (V, E) with n vertices, m edges and T triangles, our first result is an algorithm that outputs a (1+ε)-approximation to T, with asymptotically optimal round and total space complexity provided any S ≥ max{(√ m, n²/m)} space per machine and assuming T = Ω(√{m/n}). Our result gives a quadratic improvement on the bound on T over previous works. We also provide a simple extension of our result to counting any subgraph of k size for constant k ≥ 1. Our second result is an O_δ(log log n)-round algorithm for exactly counting the number of triangles, whose total space usage is parametrized by the arboricity α of the input graph. We extend this result to exactly counting k-cliques for any constant k. Finally, we prove that a recent result of Bera, Pashanasangi and Seshadhri (ITCS 2020) for exactly counting all subgraphs of size at most 5 can be implemented in the MPC model in Õ_δ(√{log n}) rounds, O(n^δ) space per machine and O(mα³) total space. In addition to our theoretical results, we simulate our triangle counting algorithms in real-world graphs obtained from the Stanford Network Analysis Project (SNAP) database. Our results show that both our approximate and exact counting algorithms exhibit improvements in terms of round complexity and approximation ratio, respectively, compared to two previous widely used algorithms for these problems. 
    more » « less
  3. Memory-hard functions (MHFs) are a key cryptographic primitive underlying the design of moderately expensive password hashing algorithms and egalitarian proofs of work. Over the past few years several increasingly stringent goals for an MHF have been proposed including the requirement that the MHF have high sequential space-time (ST) complexity, parallel space-time complexity, amortized area-time (aAT) complexity and sustained space complexity. Data-Independent Memory Hard Functions (iMHFs) are of special interest in the context of password hashing as they naturally resist side-channel attacks. iMHFs can be specified using a directed acyclic graph (DAG) $G$ with $N=2^n$ nodes and low indegree and the complexity of the iMHF can be analyzed using a pebbling game. Recently, Alwen et al. [CCS'17] constructed an DAG called DRSample which has aAT complexity at least $\Omega\left( N^2/\log N\right)$. Asymptotically DRSample outperformed all prior iMHF constructions including Argon2i, winner of the password hashing competition (aAT cost $\mathcal{O}\left(N^{1.767}\right)$), though the constants in these bounds are poorly understood. We show that the the greedy pebbling strategy of Boneh et al. [ASIACRYPT'16] is particularly effective against DRSample e.g., the aAT cost is $\mathcal{O}\left( N^2/\log N\right)$. In fact, our empirical analysis {\em reverses} the prior conclusion of Alwen et al. that DRSample provides stronger resistance to known pebbling attacks for practical values of $N \leq 2^{24}$. We construct a new iMHF candidate (DRSample+BRG) by using the bit-reversal graph to extend DRSample. We then prove that the construction is asymptotically optimal under every MHF criteria, and we empirically demonstrate that our iMHF provides the best resistance to {\em known} pebbling attacks. For example, we show that any parallel pebbling attack either has aAT cost $\omega(N^2)$ or requires at least $\Omega(N)$ steps with $\Omega(N/\log N)$ pebbles on the DAG. This makes our construction the first practical iMHF with a strong sustained space-complexity guarantee and immediately implies that any parallel pebbling has aAT complexity $\Omega(N^2/\log N)$. We also prove that any sequential pebbling (including the greedy pebbling attack) has aAT cost $\Omega\left( N^2\right)$ and, if a plausible conjecture holds, any parallel pebbling has aAT cost $\Omega(N^2 \log \log N/\log N)$ --- the best possible bound for an iMHF. We implement our new iMHF and demonstrate that it is just as fast as Argon2. Along the way we propose a simple modification to the Argon2 round function which increases an attacker's aAT cost by nearly an order of magnitude without increasing running time on a CPU. Finally, we give a pebbling reduction which proves that in the parallel random oracle model (PROM) the cost of evaluating an iMHF like Argon2i or DRSample+BRG is given by the pebbling cost of the underlying DAG. Prior pebbling reductions assumed that the iMHF round function concatenates input labels before hashing and did not apply to practical iMHFs such as Argon2i, DRSample or DRSample+BRG where input labels are instead XORed together. 
    more » « less
  4. null (Ed.)
    Maximal Independent Set (MIS) is one of the fundamental problems in distributed computing. The round (time) complexity of distributed MIS has traditionally focused on the worst-case time for all nodes to finish. The best-known (randomized) MIS algorithms take O(log n) worst-case rounds on general graphs (where n is the number of nodes). Breaking the O(log n) worst-case bound has been a longstanding open problem, while currently the best-known lower bound is [EQUATION] rounds. Motivated by the goal to reduce total energy consumption in energy-constrained networks such as sensor and ad hoc wireless networks, we take an alternative approach to measuring performance. We focus on minimizing the total (or equivalently, the average) time for all nodes to finish. It is not clear whether the currently best-known algorithms yield constant-round (or even o(log n)) node-averaged round complexity for MIS in general graphs. We posit the sleeping model, a generalization of the traditional model, that allows nodes to enter either "sleep" or "waking" states at any round. While waking state corresponds to the default state in the traditional model, in sleeping state a node is "offline", i.e., it does not send or receive messages (and messages sent to it are dropped as well) and does not incur any time, communication, or local computation cost. Hence, in this model, only rounds in which a node is awake are counted and we are interested in minimizing the average as well as the worst-case number of rounds a node spends in the awake state, besides the traditional worst-case round complexity (i.e., the rounds for all nodes to finish including both the awake and sleeping rounds). Our main result is that we show that MIS can be solved in (expected) O(1) rounds under node-averaged awake complexity measure in the sleeping model. In particular, we present a randomized distributed algorithm for MIS that has expected O(1)-rounds node-averaged awake complexity and, with high probability1 has O(log n)-rounds worst-case awake complexity and O(log3.41 n)-rounds worst-case complexity. Our work is a step towards understanding the node-averaged complexity of MIS both in the traditional and sleeping models, as well as designing energy-efficient distributed algorithms for energy-constrained networks. 
    more » « less
  5. We present a constant-round algorithm in the massively parallel computation(MPC) model for evaluating a natural join where every input relation has twoattributes. Our algorithm achieves a load of $\tilde{O}(m/p^{1/\rho})$ where$m$ is the total size of the input relations, $p$ is the number of machines,$\rho$ is the join's fractional edge covering number, and $\tilde{O}(.)$ hidesa polylogarithmic factor. The load matches a known lower bound up to apolylogarithmic factor. At the core of the proposed algorithm is a new theorem(which we name the "isolated cartesian product theorem") that provides freshinsight into the problem's mathematical structure. Our result implies that thesubgraph enumeration problem, where the goal is to report all the occurrencesof a constant-sized subgraph pattern, can be settled optimally (up to apolylogarithmic factor) in the MPC model. 
    more » « less