Timely, flexible and accurate information dissemination can make a life-and-death difference in managing disasters. Complex command structures and information organization make such dissemination challenging. Thus, it is vital to have an architecture with appropriate naming frameworks, adaptable to the changing roles of participants, focused on content rather than network addresses. To address this, we propose POISE, a name-based and recipient-based publish/subscribe architecture for efficient content dissemination in disaster management. POISE proposes an information layer, improving on state-of-the-art Information-Centric Networking (ICN) solutions such as Named Data Networking (NDN) in two major ways: 1) support for complex graph-based namespaces, and 2) automatic name-based load-splitting. To capture the complexity and dynamicity of disaster response command chains and information flows, POISE proposes a graph-based naming framework, leveraged in a dissemination protocol which exploits information layer rendezvous points (RPs) that perform name expansions. For improved robustness and scalability, POISE allows load-sharing via multiple RPs each managing a subset of the namespace graph. However, excessive workload on one RP may turn it into a “hot spot”, thus impeding performance and reliability. To eliminate such traffic concentration, we propose an automatic load-splitting mechanism, consisting of a namespace graph partitioning complemented by a seamless, loss-less core migration procedure. Due to the nature of our graph partitioning and its complex objectives, off-the-shelf graph partitioning, e.g., METIS, is inadequate. We propose a hybrid partitioning solution, consisting of an initial and a refinement phase. Our simulation results show that POISE outperforms state-of-the-art solutions, demonstrating its effectiveness in timely delivery and load-sharing.
more »
« less
Graph-Based Namespaces and Load Sharing for Efficient Information Dissemination
Graph-based namespaces are being increasingly used to represent the organization of complex and ever-growing information eco-systems and individual user roles. Timely and accurate information dissemination requires an architecture with appropriate naming frameworks, adaptable to changing roles, focused on content rather than network addresses. Today's complex information organization structures make such dissemination very challenging. To address this, we propose POISE, a name-based publish/subscribe architecture for efficient topic-based and recipient-based content dissemination. POISE proposes an information layer, improving on state-of-the-art Information-Centric Networking solutions in two major ways: 1) support for complex graph-based namespaces, and 2) automatic name-based load-splitting. POISE supports in-network graph-based naming, leveraged in a dissemination protocol which exploits information layer rendezvous points (RPs) that perform name expansions. For improved robustness and scalability, POISE supports adaptive load-sharing via multiple RPs, each managing a dynamically chosen subset of the namespace graph. Excessive workload may cause one RP to turn into a ``hot spot'', impeding performance and reliability. To eliminate such traffic concentration, we propose an automated load-splitting mechanism, consisting of an enhanced, namespace graph partitioning complemented by a seamless, loss-less core migration procedure. Due to the nature of our graph partitioning and its complex objectives, off-the-shelf graph partitioning, e.g., METIS, is inadequate. We propose a hybrid, iterative bi-partitioning solution, consisting of an initial and a refinement phase. We also implemented POISE on a DPDK-based platform. Using the important application of emergency response, our experimental results show that POISE outperforms state-of-the-art solutions, demonstrating its effectiveness in timely delivery and load-sharing.
more »
« less
- Award ID(s):
- 1818971
- NSF-PAR ID:
- 10297462
- Date Published:
- Journal Name:
- IEEE/ACM Transactions on Networking
- ISSN:
- 1063-6692
- Page Range / eLocation ID:
- 1 to 14
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)During disasters, it is critical to deliver emergency information to appropriate first responders. Name-based information delivery provides efficient, timely dissemination of relevant content to first responder teams assigned to different incident response roles. People increasingly depend on social media for communicating vital information, using free-form text. Thus, a method that delivers these social media posts to the right first responders can significantly improve outcomes. In this paper, we propose FLARE, a framework using 'Social Media Engines' (SMEs) to map social media posts (SMPs), such as tweets, to the right names. SMEs perform natural language processing-based classification and exploit several machine learning capabilities, in an online real-time manner. To reduce the manual labeling effort required for learning during the disaster, we leverage active learning, complemented by dispatchers with specific domain-knowledge performing limited labeling. We also leverage federated learning across various public-safety departments with specialized knowledge to handle notifications related to their roles in a cooperative manner. We implement three different classifiers: for incident relevance, organization, and fine-grained role prediction. Each class is associated with a specific subset of the namespace graph. The novelty of our system is the integration of the namespace with federated active learning and inference procedures to identify and deliver vital SMPs to the right first responders in a distributed multi-organization environment, in real-time. Our experiments using real-world data, including tweets generated by citizens during the wildfires in California in 2018, show our approach outperforming both a simple keyword-based classification and several existing NLP-based classification techniques.more » « less
-
null (Ed.)Delivering the right information to the right people in a timely manner can greatly improve outcomes and save lives in emergency response. A communication framework that flexibly and efficiently brings victims, volunteers, and first responders together for timely assistance can be very helpful. With the burden of more frequent and intense disaster situations and first responder resources stretched thin, people increasingly depend on social media for communicating vital information. This paper proposes ONSIDE, a framework for coordination of disaster response leveraging social media, integrating it with Information-Centric dissemination for timely and relevant dissemination. We use a graph-based pub/sub namespace that captures the complex hierarchy of the incident management roles. Regular citizens and volunteers using social media may not know of or have access to the full namespace. Thus, we utilize a social media engine (SME) to identify disaster-related social media posts and then automatically map them to the right name(s) in near-real-time. Using NLP and classification techniques, we direct the posts to appropriate first responder(s) that can help with the posted issue. A major challenge for classifying social media in real-time is the labeling effort for model training. Furthermore, as disasters hits, there may be not enough data points available for labeling, and there may be concept drift in the content of the posts over time. To address these issues, our SME employs stream-based active learning methods, adapting as social media posts come in. Preliminary evaluation results show the proposed solution can be effective.more » « less
-
Name-based pub/sub allows for efficient and timely delivery of information to interested subscribers. A challenge is assigning the right name to each piece of content, so that it reaches the most relevant recipients. An example scenario is the dissemination of social media posts to first responders during disasters. We present FLARE, a framework using federated active learning assisted by naming. FLARE integrates machine learning and name-based pub/sub for accurate timely delivery of textual information. In this demo, we show FLARE’s operation.more » « less
-
null (Ed.)In many scenarios, information must be disseminated over intermittently-connected environments when network infrastructure becomes unavailable. Example scenarios include disasters in which first responders need to send updates about their critical tasks. If such updates pertain to a shared data set (e.g., pins on a map), their consistent dissemination is important. We can achieve this through causal ordering and consensus. Popular consensus algorithms, such as Paxos and Raft, are most suited for connected environments with reliable links. While some work has been done on designing consensus algorithms for intermittently-connected environments, such as the One-Third Rule (OTR) algorithm, there is need to improve their efficiency and timely completion. We propose CoNICE, a framework to ensure consistent dissemination of updates among users in intermittently-connected, infrastructure-less environments. It achieves efficiency by exploiting hierarchical namespaces for faster convergence, and lower communication overhead. CoNICE provides three levels of consistency to users' views, namely replication, causality and agreement. It uses epidemic propagation to provide adequate replication ratios, and optimizes and extends Vector Clocks to provide causality. To ensure agreement, CoNICE extends basic OTR to support long-term fragmentation and critical decision invalidation scenarios. We integrate the multilevel consistency schema of CoNICE, with a naming schema that follows a topic hierarchy-based dissemination framework, to improve functionality and performance. Performing city-scale simulation experiments, we demonstrate that CoNICE is effective in achieving its consistency goals, and is efficient and scalable in the time for convergence and utilized network resources.more » « less