skip to main content


Title: The Influence of Participation in a Multi-Disciplinary Collaborative Service Learning Project on the Effectiveness of Team Members in a 100-level Mechanical Engineering Class
Engineers need to develop professional skills, including the ability to work successfully in teams and to communicate within and outside of their discipline, in addition to required technical skills. A collaborative multi-disciplinary service learning project referred to as Ed+gineering was implemented in a 100-level mechanical engineering course. In this collaboration, mechanical engineering students, primarily in the second semester of their freshman year or first semester of their second year, worked over the course of a semester with education students taking a foundations course to develop and deliver engineering lessons to fourth or fifth graders. Students in comparison engineering classes worked on a team project focused on experimental design for a small satellite system. The purpose of this study was to determine if participating in the Ed+gineering collaboration had a positive effect on teamwork effectiveness and satisfaction when compared to the comparison class. In both team projects, the five dimensions of the Comprehensive Assessment of Team Member Effectiveness (CATME) system were used as a quantitative assessment. The five dimensions of CATME Behaviorally Anchored Ratings Scale (BARS) (contribution to the team’s work, interacting with teammates, keeping the team on track, expecting quality, and having relevant Knowledge, Skills, and Abilities - KSAs) were measured. Additionally, within the CATME platform team satisfaction, team interdependence and team cohesiveness were measured. ANCOVA analysis was used to assess the quantitative data from CATME. Preliminary results suggest that students in the treatment classes had higher team member effectiveness and overall satisfaction scores than students in the comparison classes. Qualitative data from reflections written at the completion of the aforementioned projects were used to explore these results.  more » « less
Award ID(s):
1821658 1908743
NSF-PAR ID:
10297467
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
2021 ASEE Annual Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Over the course of several semesters, two different project-based learning approaches were used in two undergraduate engineering courses–a 100-level introductory course that covered a general education requirement on information literacy and a 300-level fluid mechanics course. One project (treatment) was an interdisciplinary service-learning project, implemented with undergraduate engineering and education students who collaborated to develop and deliver engineering lessons to fourth and fifth-grade students in a field trip model. The other projects (comparison) involved a team-based design project contained within each class. In the 100-level course, students selected their project based on personal interests and followed the engineering design process to develop, test, and redesign a prototype. In the fluid mechanics class, students designed a pumped pipeline system for a hypothetical plant. This study aimed to determine whether participating in the interdisciplinary project affected students’ evaluation of their own and their teammates’ teamwork effectiveness skills, measured using the Behaviorally Anchored Rating Scale (BARS) version of the Comprehensive Assessment of Team Member Effectiveness (CATME). The five dimensions of CATME measured in this study are (1) contribution to the team’s work, (2) interacting with teammates, (3) keeping the team on track, (4) expecting quality, and (5) having relevant knowledge, skills, and abilities (KSAs). The quantitative data from CATME were analyzed using ANCOVA. Furthermore, since data were collected over three semesters and coincided with the pre, during, and post-phases of the COVID-19 pandemic, it was possible to examine the effects of the evolving classroom constraints over the course of the pandemic on the teamwork effectiveness skills of both the treatment and comparison classes. 
    more » « less
  2. Major challenges in engineering education include retention of undergraduate engineering students (UESs) and continued engagement after the first year when concepts increase in difficulty. Additionally, employers, as well as ABET, look for students to demonstrate non-technical skills, including the ability to work successfully in groups, the ability to communicate both within and outside their discipline, and the ability to find information that will help them solve problems and contribute to lifelong learning. Teacher education is also facing challenges given the recent incorporation of engineering practices and core ideas into the Next Generation Science Standards (NGSS) and state level standards of learning. To help teachers meet these standards in their classrooms, education courses for preservice teachers (PSTs) must provide resources and opportunities to increase science and engineering knowledge, and the associated pedagogies. To address these challenges, Ed+gineering, an NSF-funded multidisciplinary collaborative service learning project, was implemented into two sets of paired-classes in engineering and education: a 100 level mechanical engineering class (n = 42) and a foundations class in education (n = 17), and a fluid mechanics class in mechanical engineering technology (n = 23) and a science methods class (n = 15). The paired classes collaborated in multidisciplinary teams of 5-8 undergraduate students to plan and teach engineering lessons to local elementary school students. Teams completed a series of previously tested, scaffolded activities to guide their collaboration. Designing and delivering lessons engaged university students in collaborative processes that promoted social learning, including researching and planning, peer mentoring, teaching and receiving feedback, and reflecting and revising their engineering lesson. The research questions examined in this pilot, mixed-methods research study include: (1) How did PSTs’ Ed+gineering experiences influence their engineering and science knowledge?; (2) How did PSTs’ and UESs’ Ed+gineering experiences influence their pedagogical understanding?; and (3) What were PSTs’ and UESs’ overall perceptions of their Ed+gineering experiences? Both quantitative (e.g., Engineering Design Process assessment, Science Content Knowledge assessment) and qualitative (student reflections) data were used to assess knowledge gains and project perceptions following the semester-long intervention. Findings suggest that the PSTs were more aware and comfortable with the engineering field following lesson development and delivery, and often better able to explain particular science/engineering concepts. Both PSTs and UESs, but especially the latter, came to realize the importance of planning and preparing lessons to be taught to an audience. UESs reported greater appreciation for the work of educators. PSTs and UESs expressed how they learned to work in groups with multidisciplinary members—this is a valuable lesson for their respective professional careers. Yearly, the Ed+gineering research team will also request and review student retention reports in their respective programs to assess project impact. 
    more » « less
  3. This project was designed to address three major challenges faced by undergraduate engineering students (UES) and pre-service teachers (PSTs): 1) retention for UESs after the first year, and continued engagement when they reach more difficult concepts, 2) to prepare PSTs to teach engineering, which is a requirement in the Next Generation Science Standards as well as many state level standards of learning, and 3) to prepare both groups of students to communicate and collaborate in a multi-disciplinary context, which is a necessary skill in their future places of work. This project was implemented in three pairs of classes: 1) an introductory mechanical engineering class, fulfilling a general education requirement for information literacy and a foundations class in education, 2) fluid mechanics in mechanical engineering technology and a science methods class in education, and 3) mechanical engineering courses requiring programming (e.g., computational methods and robotics) with an educational technology class. All collaborations taught elementary level students (4th or 5th grade). For collaborations 1 and 2, the elementary students came to campus for a field trip where they toured engineering labs and participated in a one hour lesson taught by both the UESs and PSTs. In collaboration 3, the UESs and PSTs worked with the upper-elementary students in their school during an after school club. In collaborations 1 and 2, students were assigned to teams and worked remotely on some parts of the project. A collaboration tool, built in Google Sites and Google Drive, was used to facilitate the project completion. The collaboration tool includes a team repository for all the project documents and templates. Students in collaboration 3 worked together directly during class time on smaller assignments. In all three collaborations lesson plans were implemented using the BSCS 5E instructional model, which was aligned to the engineering design process. Instruments were developed to assess knowledge in collaborations 1 (engineering design process) and 3 (computational thinking), while in collaboration 2, knowledge was assessed with questions from the fundamentals of engineering exam and a science content assessment. Comprehensive Assessment of Team Member Effectiveness (CATME) was also used in all 3 collaborations to assess teamwork across the collaborations. Finally, each student wrote a reflection on their experiences, which was used to qualitatively assess the project impact. The results from the first full semester of implementation have led us to improvements in the implementation and instrument refinement for year 2. 
    more » « less
  4. There is growing evidence of the effectiveness of project-based learning (PBL) in preparing students to solve complex problems. In PBL implementations in engineering, students are treated as professional engineers facing projects centered around real-world problems, including the complexity and uncertainty that influence such problems. Not only does this help students to analyze and solve an authentic real-world task, promoting critical thinking, but also students learn from each other, learning valuable communication and teamwork skills. Faculty play an important part by assuming non-conventional roles (e.g., client, senior professional engineer, consultant) to help students throughout this instructional and learning approach. Typically in PBLs, students work on projects over extended periods of time that culminate in realistic products or presentations. In order to be successful, students need to learn how to frame a problem, identify stakeholders and their requirements, design and select concepts, test them, and so on. Two different implementations of PBL projects in a fluid mechanics course are presented in this paper. This required, junior-level course has been taught since 2014 by the same instructor. The first PBL project presented is a complete design of pumped pipeline systems for a hypothetical plant. In the second project, engineering students partnered with pre-service teachers to design and teach an elementary school lesson on fluid mechanics concepts. With the PBL implementations, it is expected that students: 1) engage in a deeper learning process where concepts can be reemphasized, and students can realize applicability; 2) develop and practice teamwork skills; 3) learn and practice how to communicate effectively to peers and to those from other fields; and 4) increase their confidence working on open-ended situations and problems. The goal of this paper is to present the experiences of the authors with both PBL implementations. It explains how the projects were scaffolded through the entire semester, including how the sequence of course content was modified, how team dynamics were monitored, the faculty roles, and the end products and presentations. Students' experiences are also presented. To evaluate and compare students’ learning and satisfaction with the team experience between the two PBL implementations, a shortened version of the NCEES FE exam and the Comprehensive Assessment of Team Member Effectiveness (CATME) survey were utilized. Students completed the FE exam during the first week and then again during the last week of the semester in order to assess students’ growth in fluid mechanics knowledge. The CATME survey was completed mid-semester to help faculty identify and address problems within team dynamics, and at the end of the semester to evaluate individual students’ teamwork performance. The results showed that no major differences were observed in terms of the learned fluid mechanics content, however, the data showed interesting preliminary observations regarding teamwork satisfaction. Through reflective assignments (e.g., short answer reflections, focus groups), student perceptions of the PBL implementations are discussed in the paper. Finally, some of the challenges and lessons learned from implementing both projects multiple times, as well as access to some of the PBL course materials and assignments will be provided. 
    more » « less
  5. Two different implementations of PBL projects in a fluid mechanics course are presented in this paper. This required junior-level course has been taught since 2014 by the same instructor. The first PBL project presented is a complete design of pumped pipeline systems for a hypothetical plant. In the second project, engineering students partnered with pre-service teachers to design and teach an elementary school lesson on fluid mechanics concepts. The goal of this paper is to present the experiences of the authors with both PBL implementations. It explains how the projects were scaffolded through the entire semester, including how the sequence of course content was modified, how team dynamics were monitored, the faculty roles, and the end products and presentations. To evaluate and compare students’ learning and satisfaction with the team experience between the two PBL implementations, a shortened version of the NCEES FE exam and the Comprehensive Assessment of Team Member Effectiveness (CATME) survey were utilized. Students completed the FE exam during the first week and then again during the last week of the semester to assess students’ growth in fluid mechanics knowledge. The CATME survey was completed mid-semester to help faculty identify and address problems within team dynamics, and at the end of the semester to evaluate individual students’ teamwork performance. The results showed that the type of PBL approach used in the course did not have an impact on fluid mechanics content knowledge; however, the data suggests that the cross-disciplinary PBL model led to higher levels of teamwork satisfaction. Through reflective assignments, student perceptions of the PBL implementations are discussed in the paper. Finally, some of the PBL course materials and assignments are provided. 
    more » « less