Due to COVID-19, engineering summer camps offered by North Carolina State University (NCSU) shifted to a virtual format for the summer of 2021 and required a new curriculum to be designed with an emphasis on providing a hands-on experience in a virtual environment. The Department of Mechanical and Aerospace Engineering created a curriculum which included some hands-on activities used in previous, in-person camps, a homebuilt wind tunnel used to demonstrate aerospace fundamentals, and a popular engineering game used as a teaching tool to explain astronautics concepts. Each week-long camp was conducted via Zoom and led by a team consisting of a NCSU graduate student, three undergraduate students, and a faculty advisor. Anonymous student feedback following the completion of the camps showed overwhelmingly positive results with a majority of students showing interest in pursuing an engineering degree with multiple students expressing interest in attending NCSU
more »
« less
“Zooming In” on Robotics during COVID-19: A Preservice Teacher, an Engineering Student, and a 5th Grader Engineer Robotic Flowers via Zoom
The COVID-19 induced school shutdown dramatically decreased students’ hands-on STEM learning opportunities. An NSF-funded program partnering preservice teachers and undergraduate engineering students to teach robotics to fifth graders was adapted to a virtual format via Zoom. A case study intimately explored one team’s experience as they engineered bio-inspired robots over five weekly sessions. Zoom recordings, written reflections, and lesson slides were analyzed to describe how the virtual context shaped the lesson and influenced the preservice teacher’s experience. All three participants successfully engineered a robotic flower indicating hands-on robotics instruction is feasible in an online format. The virtual context increased the preservice teacher’s responsibilities and sense of autonomy, and appeared to positively influence
her knowledge and self-efficacy. Despite technical challenges, positive outcomes suggest the
approach is worth repeating. To the authors’ knowledge, this is the first study examining a virtual
robotics lesson co-taught by a preservice teacher and an engineering student.
more »
« less
- PAR ID:
- 10297471
- Date Published:
- Journal Name:
- SITE Interactive Online 2020 Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
As a result of the increased inclusion of engineering and computer science standards for K-6 schools nationwide, there is a need to better understand how teacher educators can help develop preservice teachers’ (PSTs’) teaching self-efficacy in these areas. Ed+gineering provides novel opportunities for PSTs to experience teaching and learning engineering and coding content by building COVID-companion robots. Growing evidence supports robotics as a powerful approach to STEM learning for PSTs. In this study, Ed+gineering examined three cases to explore this overarching question: In what ways did PSTs’ virtual robotics project experience develop their self-efficacy for teaching engineering and coding? Three PST cases were examined, within the context of their work with other team members (i.e., undergraduate engineering student(s), 5th graders). To understand each of three PSTs’ virtual robotics project experiences, multiple data sources were collected and analyzed which includes mid- and post-semester CATME, end of course short-answer reflections, follow up interviews (including a modified Big Five personality inventory), and Zoom session recordings. Elementary PSTs Brenda, Erica, and Sarah experienced various levels of commitment and engagement in their five Zoom sessions. These factors, along with other personal and external influences, contributed to Bandura’s four identified sources of self-efficacy. This study examines these contributing factors to create an initial working model of how PSTs develop teaching self-efficacy. In this conference session, science teacher educators will learn more about this model and pedagogical decisions that seemed to influence PST’s self-efficacy for teaching engineering and computer science.more » « less
-
This research paper presents preliminary results of an NSF-supported interdisciplinary collaboration between undergraduate engineering students and preservice teachers. The fields of engineering and elementary education share similar challenges when it comes to preparing undergraduate students for the new demands they will encounter in their profession. Engineering students need interprofessional skills that will help them value and negotiate the contributions of various disciplines while working on problems that require a multidisciplinary approach. Increasingly, the solutions to today's complex problems must integrate knowledge and practices from multiple disciplines and engineers must be able to recognize when expertise from outside their field can enhance their perspective and ability to develop innovative solutions. However, research suggests that it is challenging even for professional engineers to understand the roles, responsibilities, and integration of various disciplines, and engineering curricula have traditionally left little room for development of non-technical skills such as effective communication with a range of audiences and an ability to collaborate in multidisciplinary teams. Meanwhile, preservice teachers need new technical knowledge and skills that go beyond traditional core content knowledge, as they are now expected to embed engineering into science and coding concepts into traditional subject areas. There are nationwide calls to integrate engineering and coding into PreK-6 education as part of a larger campaign to attract more students to STEM disciplines and to increase exposure for girls and minority students who remain significantly underrepresented in engineering and computer science. Accordingly, schools need teachers who have not only the knowledge and skills to integrate these topics into mainstream subjects, but also the intention to do so. However, research suggests that preservice teachers do not feel academically prepared and confident enough to teach engineering-related topics. This interdisciplinary project provided engineering students with an opportunity to develop interprofessional skills as well as to reinforce their technical knowledge, while preservice teachers had the opportunity to be exposed to engineering content, more specifically coding, and develop competence for their future teaching careers. Undergraduate engineering students enrolled in a computational methods course and preservice teachers enrolled in an educational technology course partnered to plan and deliver robotics lessons to fifth and sixth graders. This paper reports on the effects of this collaboration on twenty engineering students and eight preservice teachers. T-tests were used to compare participants’ pre-/post- scores on a coding quiz. A post-lesson written reflection asked the undergraduate students to describe their robotics lessons and what they learned from interacting with their cross disciplinary peers and the fifth/sixth graders. Content analysis was used to identify emergent themes. Engineering students’ perceptions were generally positive, recounting enjoyment interacting with elementary students and gaining communication skills from collaborating with non-technical partners. Preservice teachers demonstrated gains in their technical knowledge as measured by the coding quiz, but reported lacking the confidence to teach coding and robotics independently of their partner engineering students. Both groups reported gaining new perspectives from working in interdisciplinary teams and seeing benefits for the fifth and sixth grade participants, including exposing girls and students of color to engineering and computing.more » « less
-
The COVID-19-induced closure of schools significantly impacted the field experiences of students enrolled in teacher preparation programs. We addressed this ongoing challenge by adapting an early field experience model for secondary teachers that shifted online mid-semester. The University Teaching Experience model deploys a cohort of preservice secondary mathematics teachers to support instruction in an introductory university mathematics course. When the designated mathematics course moved online, the preservice teachers were able to continue their field experience by facilitating small-group discussions in virtual breakout rooms. To understand the perspectives of the stakeholders participating in the online field experience, we conducted semi-structured one-on-one interviews with the preservice teachers, the mathematics course instructor, and the university mathematics students involved in this setting. Early results indicated that the preservice teachers were highly valued by both the course instructor and the undergraduate mathematics students. Additionally, the preservice teachers appreciated the opportunity to continue their field experience, albeit in the more limited format. We present themes which emerged from preservice teacher interviews and share guidance for teacher preparation program faculty interested in trying an online early field experience while access to K-12 classrooms is limited.more » « less
-
This research employs the lenses of epistemological resources and framing to examine the complexities of one teacher’s efforts to position his middle-school biology students as sensemakers. Through interviews, classroom observations, and document analysis, we trace the teacher’s activation of varied epistemological resources and how such resources positioned students’ efforts throughout the lesson. While the launch of tasks was framed as an opportunity for “doing science,” this framing became less stable when the teacher engaged with students in small group work and during the wrap up that were focused on the “right answer.” Specific phases of the lesson served as a context that influenced the epistemological resources activated, helping us understand the varied, dynamic, and sometimes contradictory nature of the teacher’s moves and their consequences on students’ framing of their efforts.more » « less