skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Progress in the Nationwide Dissemination and Assessment of Low-Cost Desktop Learning Modules and Adaptation of Pedagogy to a Virtual Era
The development of tools that promote active learning in engineering disciplines is critical. It is widely understood that students engaged in active learning environments outperform those taught using passive methods. Previously, we reported on the development and implementation of hands-on Low-Cost Desktop Learning Modules (LCDLMs) that replicate real-world industrial equipment which serves to create active learning environments. Thus far, miniaturized venturi meter, hydraulic loss, and double-pipe and shell & tube heat exchanger DLMs have been utilized by hundreds of students across the country. It was demonstrated that the use of DLMs in face-to-face classrooms results in statistically significant improvements in student performance as well as increases in student motivation compared to students taught in a traditional lecture-only style classroom. Last year, participants in the project conducted 45 implementations including over 600 DLMs at 24 universities across the country reaching more than 1,000 students. In this project, we report on the significant progress made in broad dissemination of DLMs and accompanying pedagogy. We demonstrate that DLMs serve to increase student learning gains not only in face-toface environments but also in virtual learning environments. Instructional videos were developed to aid in DLM-based learning during the COVID-19 pandemic when instructors were limited to virtual instruction. Preliminary results from this work show that students working with DLMs even in a virtual setting significantly outperform those taught without DLM-associated materials. Significant progress has also been made on the development of a new DLM cartridge: a see-through 3Dprinted miniature fluidized bed. The new 3D printing methodology will allow for rapid prototyping and streamlined development of DLMs. A 3D-printed evaporative cooling tower DLM will also be developed in the coming year. In October 2020, the team held a virtual implementers workshop to train new participating faculty in DLM use and implementation. In total, 13 new faculty participants from 10 universities attended the 6-hour, 2- day workshop and plan to implement DLMs in their classrooms during this academic year. In the last year, this project was disseminated in 8 presentations at the ASEE Virtual Conference (June 2020) and American Institute of Chemical Engineers Annual Conference (November 2019) as well as the AIChE virtual Community of Practice Labs Group and a seminar at a major university, ultimately disseminating DLM pedagogy to approximately 200 individuals including approximately 120 university faculty. Further, the former group postdoc has accepted an instructor faculty position at University of Wisconsin Madison where she will teach unit operations among other subjects; she and the remainder of the team believe the LCDLM project has prepared her well for that position. In the remaining 2.5 years of the project, we will continue to evaluate the effectiveness of DLMs in teaching key heat transfer and fluid dynamics concepts thru implementations in the rapidly expanding pool of participating universities. Further, we continue our ongoing efforts in creating the robust support structure necessary for large-scale adoption of hands-on educational tools for promotion of hands-on interactive student learning.  more » « less
Award ID(s):
1821679
PAR ID:
10297535
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
ASEE Annual Conference proceedings
ISSN:
1524-4644
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The development of tools that promote active learning in engineering disciplines is critical. It is widely understood that students engaged in active learning environments outperform those taught using passive methods. Previously, we reported on the development and implementation of hands-on Low-Cost Desktop Learning Modules (LCDLMs) that replicate real-world industrial equipment which serves to create active learning environments. Thus far, miniaturized venturi meter, hydraulic loss, and double-pipe and shell & tube heat exchanger DLMs have been utilized by hundreds of students across the country. It was demonstrated that the use of DLMs in face-to-face classrooms results in statistically significant improvements in student performance as well as increases in student motivation compared to students taught in a traditional lecture-only style classroom. Last year, participants in the project conducted 45 implementations including over 600 DLMs at 24 universities across the country reaching more than 1,000 students. In this project, we report on the significant progress made in broad dissemination of DLMs and accompanying pedagogy. We demonstrate that DLMs serve to increase student learning gains not only in face-to-face environments but also in virtual learning environments. Instructional videos were developed to aid in DLM-based learning during the COVID-19 pandemic when instructors were limited to virtual instruction. Preliminary results from this work show that students working with DLMs even in a virtual setting significantly outperform those taught without DLM-associated materials. Significant progress has also been made on the development of a new DLM cartridge: a see-through 3D-printed miniature fluidized bed. The new 3D printing methodology will allow for rapid prototyping and streamlined development of DLMs. A 3D-printed evaporative cooling tower DLM will also be developed in the coming year. In October 2020, the team held a virtual implementers workshop to train new participating faculty in DLM use and implementation. In total, 13 new faculty participants from 10 universities attended the 6-hour, 2-day workshop and plan to implement DLMs in their classrooms during this academic year. In the last year, this project was disseminated in 8 presentations at the American Society for Engineering Education (ASEE) Virtual Conference (June 2020) and American Institute of Chemical Engineers Annual Conference (November 2019) as well as the AIChE virtual Community of Practice Labs Group and a seminar at a major university, ultimately disseminating DLM pedagogy to approximately 200 individuals including approximately 120 university faculty. Further, the former group postdoc has accepted an instructor faculty position at University of Wisconsin Madison where she will teach unit operations among other subjects; she and the remainder of the team believe the LCDLM project has prepared her well for that position. In the remaining 2.5 years of the project, we will continue to evaluate the effectiveness of DLMs in teaching key heat transfer and fluid dynamics concepts thru implementations in the rapidly expanding pool of participating universities. Further, we continue our ongoing efforts in creating the robust support structure necessary for large-scale adoption of hands-on educational tools for promotion of hands-on interactive student learning. 
    more » « less
  2. Our team has developed Low-Cost Desktop Learning Modules (LCDLMS) as tools to study transport phenomena aimed at providing hands-on learning experiences. With an implementation design embedded in the community of inquiry framework, we disseminate units to professors across the country and train them on how to facilitate teacher presence in the classroom with the LC-DLMs. Professors are briefed on how create a homogenous learning environment for students based on best-practices using the LC-DLMs. By collecting student cognitive gain data using pre/posttests before and after students encounter the LC-DLMs, we aim to isolate the variable of the professor on the implementation with LC-DLMs. Because of the onset of COVID-19, we have modalities for both hands-on and virtual implementation data. An ANOVA whereby modality was grouped and professor effect was the independent variable had significance on the score difference in pre/posttest scores (p<0.0001) and on posttest score only (p=0.0004). When we divide out modality between hands-on and virtual, an ANOVA with an F- test using modality as the independent variable and professor effect as the nesting variable also show significance on the score difference between pre and posttests (p-value=0.0236 for hands- on, and p-value=0.0004 for virtual) and on the posttest score only (p-value=0.0314 for hands-on, and p-value<0.0001 for virtual). These results indicate that in all modalities professor had an effect on student cognitive gains with respect to differences in pre/posttest score and posttest score only. Future will focus on qualitative analysis of features of classrooms yield high cognitive gains in undergraduate engineering students. 
    more » « less
  3. Our team has developed Low-Cost Desktop Learning Modules (LCDLMS) as tools to study transport phenomena aimed at providing hands-on learning experiences. With an implementation design embedded in the community of inquiry framework, we disseminate units to professors across the country and train them on how to facilitate teacher presence in the classroom with the LC-DLMs. Professors are briefed on how create a homogenous learning environment for students based on best-practices using the LC-DLMs. By collecting student cognitive gain data using pre/posttests before and after students encounter the LC-DLMs, we aim to isolate the variable of the professor on the implementation with LC-DLMs. Because of the onset of COVID-19, we have modalities for both hands-on and virtual implementation data. An ANOVA whereby modality was grouped and professor effect was the independent variable had significance on the score difference in pre/posttest scores (p<0.0001) and on posttest score only (p=0.0004). When we divide out modality between hands-on and virtual, an ANOVA with an Ftest using modality as the independent variable and professor effect as the nesting variable also show significance on the score difference between pre and posttests (p-value=0.0236 for handson, and p-value=0.0004 for virtual) and on the posttest score only (p-value=0.0314 for hands-on, and p-value<0.0001 for virtual). These results indicate that in all modalities professor had an effect on student cognitive gains with respect to differences in pre/posttest score and posttest score only. Future will focus on qualitative analysis of features of classrooms yield high cognitive gains in undergraduate engineering students. 
    more » « less
  4. To teach STEM content to K-12 students and to recruit talented and diverse K-12 students into STEM, many outreach programs at universities in the United States rely on STEM undergraduates. While the design of such outreach typically focuses on the K-12 students who are taught or recruited, an important but often overlooked consideration is the effect of the outreach on the professional development of the STEM undergraduates themselves. This proposed EAGER project seeks to determine which outreach programs in the United States provided the most transformative professional development of the participating STEM undergraduates. This project then seeks to capture the essence what practices in those programs provided transformative professional development. Next, the project seeks to disseminate these practices to a network of institutions doing outreach. Supporting this project is the NSF EArly-concept Grant for Exploratory Research (EAGER) program. In this first year of the project, we performed a systematic review of literature and university websites with follow-up survey data to identify outreach programs that may be transformative for STEM undergraduates. This review yielded a matrix of about 100 college-based outreach programs. We then invited these programs to attend one of the following workshops: a March workshop held at Tufts University in Boston or an April workshop held at the University of Nebraska in Lincoln. Nine institutions sent representatives to the Boston workshop, and five institutions sent representatives to the Lincoln workshop. In addition, we held conference calls to gather information from an additional six institutions. The purpose of the workshops and conference calls was two-fold: (1) determine best practices for outreach that used STEM undergraduates, and (2) determine what in those programs provided the most transformative development of the participating STEM undergraduates. This paper presents preliminary results from these workshops and conference calls. 
    more » « less
  5. null (Ed.)
    With support from the National Science Foundation, an evidence-based experimental centric pedagogy (ECP) is being implemented across STEM disciplines at an historically black university. This is the first of its kind, where the ECP is being extended to several STEM disciplines after its successful implementation in electrical engineering to promote motivation and enhance academic achievement of minority students. One of the project objectives is to organize workshops whereby STEM faculty in biology, chemistry, physics, civil engineering, computer science, industrial engineering and transportation systems will learn how to develop and implement ECP as an active learning pedagogy. This paper highlights the strategies used for planning, publicity, implementation, and assessment of the workshop conducted in Summer 2020. Due to the ongoing pandemic, the workshop was held virtually with 360 participants registering globally. The workshop’s focus was developing and implementing inexpensive home-based hands-on learning activities. Workshop assessment revealed that participants expressed positive outcomes, 84% reported that they believe the workshop was a good use of their time and 83% said they plan to implement what they had learned at the workshop in their own practice, affording the participants more opportunities to include home-based hands-on learning in their curriculum. This project seeks not only to increase public scientific literacy, but to also contribute to the development of a diverse, globally competitive STEM workforce. 
    more » « less