skip to main content

Title: An Instance Segmentation and Clustering Model for Energy Audit Assessments in Built Environments: A Multi-Stage Approach
Heat loss quantification (HLQ) is an essential step in improving a building’s thermal performance and optimizing its energy usage. While this problem is well-studied in the literature, most of the existing studies are either qualitative or minimally driven quantitative studies that rely on localized building envelope points and are, thus, not suitable for automated solutions in energy audit applications. This research work is an attempt to fill this gap of knowledge by utilizing intensive thermal data (on the order of 100,000 plus images) and constitutes a relatively new area of analysis in energy audit applications. Specifically, we demonstrate a novel process using deep-learning methods to segment more than 100,000 thermal images collected from an unmanned aerial system (UAS). To quantify the heat loss for a building envelope, multiple stages of computations need to be performed: object detection (using Mask-RCNN/Faster R-CNN), estimating the surface temperature (using two clustering methods), and finally calculating the overall heat transfer coefficient (e.g., the U-value). The proposed model was applied to eleven academic campuses across the state of North Dakota. The preliminary findings indicate that Mask R-CNN outperformed other instance segmentation models with an mIOU of 73% for facades, 55% for windows, 67% for roofs, 24% more » for doors, and 11% for HVACs. Two clustering methods, namely K-means and threshold-based clustering (TBC), were deployed to estimate surface temperatures with TBC providing consistent estimates across all times of the day over K-means. Our analysis demonstrated that thermal efficiency not only depended on the accurate acquisition of thermal images but also relied on other factors, such as the building geometry and seasonal weather parameters, such as the outside/inside building temperatures, wind, time of day, and indoor heating/cooling conditions. Finally, the resultant U-values of various building envelopes were compared with recommendations from the American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) building standards. « less
Authors:
; ; ; ; ;
Award ID(s):
1920011
Publication Date:
NSF-PAR ID:
10297574
Journal Name:
Sensors
Volume:
21
Issue:
13
Page Range or eLocation-ID:
4375
ISSN:
1424-8220
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract One of the major challenges in the development of micro-combustors is heat losses that result in flame quenching, and reduced combustion efficiency and performance. In this work, a novel thermal barrier coating (TBC) using hexagonal boron nitride (h-BN) nanosheets as building blocks was developed and applied to a Swiss roll micro-combustor for determining its heat losses with increased temperatures inside the combustor that contributes to improved performance. It was found that by using the h-BN TBC, the combustion temperature of the micro-combustor increased from 850 K to 970 K under the same thermal loading and operational conditions. This remarkable temperature increase using the BN TBC originated from its low cross-plane thermal conductivity of 0.4 W m−1 K−1to mitigate the heat loss from the micro-combustor plates. Such a low thermal conductivity in the h-BN TBC is attributed to its interfacial resistance between the nanosheets. The development of h-BN TBC provides an effective approach to improve thermal management for performance improvements of gas turbine engines, rocket engines, and all various kinds of micro-combustors.
  2. The photothermal experiments on the incident light angle dependence are carried out using simulated solar light on thin films of both iron oxides (Fe3O4 and Fe3O4@Cu2-xS) and porphyrin compounds (chlorophyll and chlorophyllin). Fe3O4 and Fe3O4@Cu2-xS are synthesized using various solution methods that produce mono-dispersed nanoparticles on the order of 10 nm. Chlorophyll is extracted from fresh spinach and chlorophyllin sodium copper is a commercial product. These photothermal (PT) materials are dispersed in polymethyl methacrylate (PMMA) solutions and deposited on glass substrates via spin coating that result in clear and transparent thin films. The iron-oxide based thin films show distinctive absorption spectra; Fe3O4 exhibits a strong peak near UV and gradually decreases into the visible and NIR regions; the absorption of Fe3O4@Cu2-xS is similar in the UV region but shows a broad absorption in the NIR region. Both chlorophyll and chlorophyllin are characterized with absorption peaks near UV and NIR showing a “U”-shaped spectrum, ideally required for efficient solar harvest and high transparency in energy-efficient single-pane window applications. Upon coating of the transparent PT films on the window inner surfaces, solar irradiation induces the photothermal effect, consequently raising the film temperature. In this fashion, the thermal loss through the window canmore »be significantly lowered by reducing the temperature difference between the window inner surface and the room interior, based on a new concept of so-called “optical thermal insulation” (OTI) without any intervention medium, such as air/argon, as required in the glazing technologies. Single-panes are therefore possible to replace double- or triple panes. As OTI is inevitably affected by seasonal and daily sunlight changes, an incident light angle dependence of the photothermal effect is crucial in both thin film and window designs. It is found that the heating curves reach their maxima at small angles of incidence while the photothermal effect is considerably reduced at large angles. This angle dependence is well explained by light reflection by the thin film surface, however, deviated from what is predicted by the Fresnel’s law, attributable to non-ideal surfaces of the substrates. The angle dependence data provides an important reference for OTI that window exposure to sun is greater at winter solstice while that is considerably reduced in the summer. This conclusion indicates much enhanced solar harvesting and heat conversion via optically insulated windows in the winter season, resulting in much lower U-factors.« less
  3. ABSTRACT To understand the potential impacts on both thermal performance and condensation risks of using low-e coatings in buildings, especially in the single-pane sector, in this work, parametric numerical analysis in winter is conducted. Three building glazing models, including the single-pane without low-e coatings (SNL), single-pane with exterior low-e coatings (SEL), and single-pane with interior low-e coatings (SIL), are selected and simulated through COMSOL over a range of outdoor temperature and indoor humidity. The temperature of the interior surface of windows, heat flux through windows, winter U-factor of center-of-glass will be obtained and compared. Additionally, a numerical code is developed in R to compute and plot the condensation temperatures of these three models upon the given indoor humidity levels and simulated surface temperatures. The comprehensive analysis of condensation risks on the glazing inner surface of the three models will be conducted. This parametric simulation effort indicates an interesting feature for a single-pane window: while the SIL gives a substantially lower U than the SNL, it also corresponds to an increased condensation risk under certain limits of external temperature and indoor humidity levels. Upon the resultant condensation temperatures and thermal performance analysis, we can conclude the parameters of the windowpane property,more »coating emissivity and placement, local climate, and building interior thermal settings must be taken into account collectively when it comes to adding low-e coatings to single-pane windows.« less
  4. A thermoelectric building envelope (TBE) is a new type of active building envelope that incorporates thermoelectric material in the building's enclosure. In TBE, the electrical energy and thermal energy can transfer between them through thermoelectric material. As a result, TBE can provide cooling or heating to indoor space if power is applied. TBE-based cooling or heating has high reliability and a low maintenance cost, low CO2 emission, and no refrigerant use. TBE is conducive to the operation of net-zero energy and greenhouse gas emission buildings by using renewable energy. In this study, a multi-stage TBE prototype for space heating and cooling was designed, assembled, and tested. The performance of the TBE prototype was evaluated in two psychrometric chambers with controlled temperature and humidity in Herrick Laboratory at Purdue University. The performance was analyzed, including the surface and air temperatures, cooling capacity, and COP defined as the ratio of cooling capacity to the power input. The test result indicated that the COP of TBE in summer scenarios ranged from 0.46 to 2.4 with varied power inputs. The cooling capacity of one prototype can exceed 6.3 kW/cm2. The findings discussed can guide the design and operation of TBE.
  5. Thermoelectric (TE) cement composite is a new type of TE material. Unlike ordinary cement, TE cement can mutually convert thermal energy to electrical energy due to the addition of carbon fibers, metal oxide nanoparticles, etc. In hot summer or cold winter, the significant temperature difference between indoor and outdoor can be used by TE cement to generate electricity. On the other hand, given power input, the same material can provide cooling/ heating to adjust room temperature. Therefore, TE cement has certain energy-saving potential in the application of building enclosures and energy systems. Its ability to convert different forms of energy and use low-grade energy is conducive to the operation of net-zero buildings. In this study, a novel TE cement composite, MnO2 and graphite enhanced cement, was firstly fabricated. The surface morphology of the composites was analyzed by using the images taken by scanning electron microscopy. The performance indicators of TE materials include the power factor and dimensionless figure of merit ZT The values of five TE properties were measured and calculated by a Physical Property Measurement System at different temperatures. Compared with the cement reinforced by graphite alone, it is confirmed that MnO2 nanoparticles have a positive effect on themore »enhancement of the TE performance for cement composites. The 5wt.% graphite and 10wt.% MnO2 enhanced cement composite achieves the highest Z.T. of 6.2 × 10-6 at 350 K.« less