skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring the Benefits of Depth Information in Object Pixel Masking (Student Abstract)
In this paper, we look at how depth data can benefit existing object masking methods applied in occluded scenes. Masking the pixel locations of objects within scenes helps computers get a spatial awareness of where objects are within images. The current state-of-the-art algorithm for masking objects in images is Mask R-CNN, which builds on the Faster R-CNN network to mask object pixels rather than just detecting their bounding boxes. This paper examines the weaknesses Mask R-CNN has in masking people when they are occluded in a frame. It then looks at how depth data gathered from an RGB-D sensor can be used. We provide a case study to show how simply applying thresholding methods on the depth information can aid in distinguishing occluded persons. The intention of our research is to examine how features from depth data can benefit object pixel masking methods in an explainable manner, especially in complex scenes with multiple objects.  more » « less
Award ID(s):
1911230
PAR ID:
10176537
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
34
Issue:
10
ISSN:
2159-5399
Page Range / eLocation ID:
13833 to 13834
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep learning algorithms are exceptionally valuable tools for collecting and analyzing the catastrophic readiness and countless actionable flood data. Convolutional neural networks (CNNs) are one form of deep learning algorithms widely used in computer vision which can be used to study flood images and assign learnable weights to various objects in the image. Here, we leveraged and discussed how connected vision systems can be used to embed cameras, image processing, CNNs, and data connectivity capabilities for flood label detection. We built a training database service of >9000 images (image annotation service) including the image geolocation information by streaming relevant images from social media platforms, Department of Transportation (DOT) 511 traffic cameras, the US Geological Survey (USGS) live river cameras, and images downloaded from search engines. We then developed a new python package called “FloodImageClassifier” to classify and detect objects within the collected flood images. “FloodImageClassifier” includes various CNNs architectures such as YOLOv3 (You look only once version 3), Fast R–CNN (Region-based CNN), Mask R–CNN, SSD MobileNet (Single Shot MultiBox Detector MobileNet), and EfficientDet (Efficient Object Detection) to perform both object detection and segmentation simultaneously. Canny Edge Detection and aspect ratio concepts are also included in the package for flood water level estimation and classification. The pipeline is smartly designed to train a large number of images and calculate flood water levels and inundation areas which can be used to identify flood depth, severity, and risk. “FloodImageClassifier” can be embedded with the USGS live river cameras and 511 traffic cameras to monitor river and road flooding conditions and provide early intelligence to emergency response authorities in real-time. 
    more » « less
  2. In this paper, we present an end-to-end instance segmentation method that regresses a polygonal boundary for each object instance. This sparse, vectorized boundary representation for objects, while attractive in many downstream computer vision tasks, quickly runs into issues of parity that need to be addressed: parity in supervision and parity in performance when compared to existing pixel-based methods. This is due in part to object instances being annotated with ground-truth in the form of polygonal boundaries or segmentation masks, yet being evaluated in a convenient manner using only segmentation masks. Our method, BoundaryFormer, is a Transformer based architecture that directly predicts polygons yet uses instance mask segmentations as the ground-truth supervision for computing the loss. We achieve this by developing an end-to-end differentiable model that solely relies on supervision within the mask space through differentiable rasterization. BoundaryFormer matches or surpasses the Mask R-CNN method in terms of instance segmentation quality on both COCO and Cityscapes while exhibiting significantly better transferability across datasets. 
    more » « less
  3. e apply a new deep learning technique to detect, classify, and deblend sources in multi-band astronomical images. We train and evaluate the performance of an artificial neural network built on the Mask R-CNN image processing framework, a general code for efficient object detection, classification, and instance segmentation. After evaluating the performance of our network against simulated ground truth images for star and galaxy classes, we find a precision of 92% at 80% recall for stars and a precision of 98% at 80% recall for galaxies in a typical field with ∼30 galaxies/arcmin2. We investigate the deblending capability of our code, and find that clean deblends are handled robustly during object masking, even for significantly blended sources. This technique, or extensions using similar network architectures, may be applied to current and future deep imaging surveys such as LSST and WFIRST. Our code, Astro R-CNN, is publicly available at https://github.com/burke86/astro_rcnn 
    more » « less
  4. Cracks of civil infrastructures, including bridges, dams, roads, and skyscrapers, potentially reduce local stiffness and cause material discontinuities, so as to lose their designed functions and threaten public safety. This inevitable process signifier urgent maintenance issues. Early detection can take preventive measures to prevent damage and possible failure. With the increasing size of image data, machine/deep learning based method have become an important branch in detecting cracks from images. This study is to build an automatic crack detector using the state-of-the-art technique referred to as Mask Regional Convolution Neural Network (R-CNN), which is kind of deep learning. Mask R-CNN technique is a recently proposed algorithm not only for object detection and object localization but also for object instance segmentation of natural images. It is found that the built crack detector is able to perform highly effective and efficient automatic segmentation of a wide range of images of cracks. In addition, this proposed automatic detector could work on videos as well; indicating that this detector based on Mask R-CNN provides a robust and feasible ability on detecting cracks exist and their shapes in real time on-site. 
    more » « less
  5. Integral imaging has proven useful for three-dimensional (3D) object visualization in adverse environmental conditions such as partial occlusion and low light. This paper considers the problem of 3D object tracking. Two-dimensional (2D) object tracking within a scene is an active research area. Several recent algorithms use object detection methods to obtain 2D bounding boxes around objects of interest in each frame. Then, one bounding box can be selected out of many for each object of interest using motion prediction algorithms. Many of these algorithms rely on images obtained using traditional 2D imaging systems. A growing literature demonstrates the advantage of using 3D integral imaging instead of traditional 2D imaging for object detection and visualization in adverse environmental conditions. Integral imaging’s depth sectioning ability has also proven beneficial for object detection and visualization. Integral imaging captures an object’s depth in addition to its 2D spatial position in each frame. A recent study uses integral imaging for the 3D reconstruction of the scene for object classification and utilizes the mutual information between the object’s bounding box in this 3D reconstructed scene and the 2D central perspective to achieve passive depth estimation. We build over this method by using Bayesian optimization to track the object’s depth in as few 3D reconstructions as possible. We study the performance of our approach on laboratory scenes with occluded objects moving in 3D and show that the proposed approach outperforms 2D object tracking. In our experimental setup, mutual information-based depth estimation with Bayesian optimization achieves depth tracking with as few as two 3D reconstructions per frame which corresponds to the theoretical minimum number of 3D reconstructions required for depth estimation. To the best of our knowledge, this is the first report on 3D object tracking using the proposed approach. 
    more » « less