skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: AdapTutAR: An Adaptive Tutoring System for Machine Tasks in Augmented Reality
Modern manufacturing processes are in a state of flux, as they adapt to increasing demand for flexible and self-configuring production. This poses challenges for training workers to rapidly master new machine operations and processes, i.e. machine tasks. Conventional in-person training is effective but requires time and effort of experts for each worker trained and not scalable. Recorded tutorials, such as video-based or augmented reality (AR), permit more efficient scaling. However, unlike in-person tutoring, existing recorded tutorials lack the ability to adapt to workers’ diverse experiences and learning behaviors. We present AdapTutAR, an adaptive task tutoring system that enables experts to record machine task tutorials via embodied demonstration and train learners with different AR tutoring contents adapting to each user’s characteristics. The adaptation is achieved by continually monitoring learners’ tutorial-following status and adjusting the tutoring content on-the-fly and in-situ. The results of our user study evaluation have demonstrated that our adaptive system is more effective and preferable than the non-adaptive one.  more » « less
Award ID(s):
1839971
PAR ID:
10297581
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
CHI Conference on Human Factors in Computing Systems (CHI '21)
Page Range / eLocation ID:
1 to 15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Augmented reality (AR) is an efficient form of delivering spatial information and has great potential for training workers. However, AR is still not widely used for such scenarios due to the technical skills and expertise required to create interactive AR content. We developed ProcessAR, an AR-based system to develop 2D/3D content that captures subject matter expert’s (SMEs) environment-object interactions in situ. The design space for ProcessAR was identified from formative interviews with AR programming experts and SMEs, alongside a comparative design study with SMEs and novice users. To enable smooth workflows, ProcessAR locates and identifies different tools/objects through computer vision within the workspace when the author looks at them. We explored additional features such as embedding 2D videos with detected objects and user-adaptive triggers. A final user evaluation comparing ProcessAR and a baseline AR authoring environment showed that, according to our qualitative questionnaire, users preferred ProcessAR. 
    more » « less
  2. Self-regulated learning (SRL) is the ability to regulate cognitive, metacognitive, motivational, and emotional states while learning and is posited to be a strong predictor of academic success. It is therefore important to provide learners with effective instructions to promote more meaningful and effective SRL processes. One way to implement SRL instructions is through providing real-time SRL scaffolding while learners engage with a task. However, previous studies have tended to focus on fixed scaffolding rather than adaptive scaffolding that is tailored to student actions. Studies that have investigated adaptive scaffolding have not adequately distinguished between the effects of adaptive and fixed scaffolding compared to a control condition. Moreover, previous studies have tended to investigate the effects of scaffolding at the task level rather than shorter time segments—obscuring the impact of individual scaffolds on SRL processes. To address these gaps, we (a) collected trace data about student activities while working on a multi-source writing task and (b) analyzed these data using a cutting-edge learning analytic technique— ordered network analysis (ONA)—to model, visualize, and explain how learners' SRL processes changed in relation to the scaffolds. At the task level, our results suggest that learners who received adaptive scaffolding have significantly different patterns of SRL processes compared to the fixed scaffolding and control conditions. While not significantly different, our results at the task segment level suggest that adaptive scaffolding is associated with earlier engagement in SRL processes. At both the task level and task segment level, those who received adaptive scaffolding, compared to the other conditions, exhibited more task-guided learning processes such as referring to task instructions and rubrics in relation to their reading and writing. This study not only deepens our understanding of the effects of scaffolding at different levels of analysis but also demonstrates the use of a contemporary learning analytic technique for evaluating the effects of different kinds of scaffolding on learners' SRL processes. 
    more » « less
  3. null (Ed.)
    Machine tasks in workshops or factories are often a compound sequence of local, spatial, and body-coordinated human-machine interactions. Prior works have shown the merits of video-based and augmented reality (AR) tutoring systems for local tasks. However, due to the lack of a bodily representation of the tutor, they are not as effective for spatial and body-coordinated interactions. We propose avatars as an additional tutor representation to the existing AR instructions. In order to understand the design space of tutoring presence for machine tasks, we conduct a comparative study with 32 users. We aim to explore the strengths/limitations of the following four tutor options: video, non-avatar-AR, half-body+AR, and full-body+AR. The results show that users prefer the half-body+AR overall, especially for the spatial interactions. They have a preference for the full-body+AR for the body-coordinated interactions and the non-avatar-AR for the local interactions. We further discuss and summarize design recommendations and insights for future machine task tutoring systems. 
    more » « less
  4. Online education is on the rise in the US and abroad and provides a convenient form of knowledge transfer to people who cannot be full- and or even part-time students at community colleges or universities. This factor impacts industry representatives, displaced workers, and low-income learners. Usually, online education consists of online lectures and/or tutorials designed so users can comprehend the studied subject. The missing piece of online education is the lack of hands-on activities. To address this issue, Michigan Tech and West Shore Community College collaborate on researching, developing, and implementing a State-of-the-Art Teleoperated Robotic Workcell (TRW) to enable enhanced remote training for industrial robots. The system is designed to provide training opportunities to college students, industry representatives, and displaced workers wishing to retool their skills and become more competitive in the job market. 
    more » « less
  5. Understanding a student's problem-solving strategy can have a significant impact on effective math learning using Intelligent Tutoring Systems (ITSs) and Adaptive Instructional Systems (AISs). For instance, the ITS/AIS can better personalize itself to correct specific misconceptions that are indicated by incorrect strategies, specific problems can be designed to improve strategies and frustration can be minimized by adapting to a student's natural way of thinking rather than trying to fit a standard strategy for all. While it may be possible for human experts to identify strategies manually in classroom settings with sufficient student interaction, it is not possible to scale this up to big data. Therefore, we leverage advances in Machine Learning and AI methods to perform scalable strategy prediction that is also fair to students at all skill levels. Specifically, we develop an embedding called MVec where we learn a representation based on the mastery of students. We then cluster these embeddings with a non-parametric clustering method where each cluster contains instances that have approximately symmetrical strategies. The strategy prediction model is trained on instances sampled from these clusters ensuring that we train the model over diverse strategies. Using real world large-scale student interaction datasets from MATHia, we show that our approach can scale up to achieve high accuracy by training on a small sample of a large dataset and also has predictive equality, i.e., it can predict strategies equally well for learners at diverse skill levels. 
    more » « less