skip to main content

Title: Towards coupling full-disk and active region-based flare prediction for operational space weather forecasting
Solar flare prediction is a central problem in space weather forecasting and has captivated the attention of a wide spectrum of researchers due to recent advances in both remote sensing as well as machine learning and deep learning approaches. The experimental findings based on both machine and deep learning models reveal significant performance improvements for task specific datasets. Along with building models, the practice of deploying such models to production environments under operational settings is a more complex and often time-consuming process which is often not addressed directly in research settings. We present a set of new heuristic approaches to train and deploy an operational solar flare prediction system for ≥M1.0-class flares with two prediction modes: full-disk and active region-based. In full-disk mode, predictions are performed on full-disk line-of-sight magnetograms using deep learning models whereas in active region-based models, predictions are issued for each active region individually using multivariate time series data instances. The outputs from individual active region forecasts and full-disk predictors are combined to a final full-disk prediction result with a meta-model. We utilized an equal weighted average ensemble of two base learners’ flare probabilities as our baseline meta learner and improved the capabilities of our two base learners by training a logistic regression model. The major findings of this study are: 1) We successfully coupled two heterogeneous flare prediction models trained with different datasets and model architecture to predict a full-disk flare probability for next 24 h, 2) Our proposed ensembling model, i.e., logistic regression, improves on the predictive performance of two base learners and the baseline meta learner measured in terms of two widely used metrics True Skill Statistic (TSS) and Heidke Skill Score (HSS), and 3) Our result analysis suggests that the logistic regression-based ensemble (Meta-FP) improves on the full-disk model (base learner) by ∼9% in terms TSS and ∼10% in terms of HSS. Similarly, it improves on the AR-based model (base learner) by ∼17% and ∼20% in terms of TSS and HSS respectively. Finally, when compared to the baseline meta model, it improves on TSS by ∼10% and HSS by ∼15%.  more » « less
Award ID(s):
1931555 2104004
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Frontiers in Astronomy and Space Sciences
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lossio-Ventura J.A. ; Valverde-Rebaza J. ; Diaz E. ; Muñante D. ; Gavidia-Calderon C. ; Baria Valejo A.D. ; Alatrista-Salas H. (Ed.)
    The efforts in solar flare prediction have been engendered by the advancements in machine learning and deep learning methods. We present a new approach to flare prediction using full-disk compressed magnetogram images with Convolutional Neural Networks. We selected three prediction modes, among which two are binary for predicting the occurrence of ≥M1.0 and ≥C4.0 class flares and one is a multi-class mode for predicting the occurrence of more » « less
  2. Bifet A. ; Lorena A.C ; Ribeiro R.P. ; Gama J. ; Abreu p.H. (Ed.)
    This paper presents a post hoc analysis of a deep learning-based full-disk solar flare prediction model. We used hourly full-disk line-of-sight magnetogram images and selected binary prediction mode to predict the occurrence of ≥M1.0-class flares within 24 h. We leveraged custom data augmentation and sample weighting to counter the inherent class-imbalance problem and used true skill statistic and Heidke skill score as evaluation metrics. Recent advancements in gradient-based attention methods allow us to interpret models by sending gradient signals to assign the burden of the decision on the input features. We interpret our model using three post hoc attention methods: (i) Guided Gradient-weighted Class Activation Mapping, (ii) Deep Shapley Additive Explanations, and (iii) Integrated Gradients. Our analysis shows that full-disk predictions of solar flares align with characteristics related to the active regions. The key findings of this study are: (1) We demonstrate that our full disk model can tangibly locate and predict near-limb solar flares, which is a critical feature for operational flare forecasting, (2) Our candidate model achieves an average TSS=0.51±0.05 and HSS=0.38±0.08, and (3) Our evaluation suggests that these models can learn conspicuous features corresponding to active regions from full-disk magnetograms. 
    more » « less
  3. Solar flares are transient space weather events that pose a significant threat to space and ground-based technological systems, making their precise and reliable prediction crucial for mitigating potential impacts. This paper contributes to the growing body of research on deep learning methods for solar flare prediction, primarily focusing on highly overlooked near-limb flares and utilizing the attribution methods to provide a post hoc qualitative explanation of the model’s predictions. We present a solar flare prediction model, which is trained using hourly full-disk line-of-sight magnetogram images and employs a binary prediction mode to forecast ≥M-class flares that may occur within the following 24-hour period. To address the class imbalance, we employ a fusion of data augmentation and class weighting techniques; and evaluate the overall performance of our model using the true skill statistic (TSS) and Heidke skill score (HSS). Moreover, we applied three attribution methods, namely Guided Gradient-weighted Class Activation Mapping, Integrated Gradients, and Deep Shapley Additive Explanations, to interpret and cross-validate our model’s predictions with the explanations. Our analysis revealed that full-disk prediction of solar flares aligns with characteristics related to active regions (ARs). In particular, the key findings of this study are: (1) our deep learning models achieved an average TSS∼0.51 and HSS∼0.35, and the results further demonstrate a competent capability to predict near-limb solar flares and (2) the qualitative analysis of the model’s explanation indicates that our model identifies and uses features associated with ARs in central and near-limb locations from full-disk magnetograms to make corresponding predictions. In other words, our models learn the shape and texture-based characteristics of flaring ARs even when they are at near-limb areas, which is a novel and critical capability that has significant implications for operational forecasting. 
    more » « less
  4. Supervised Machine Learning (ML) models for solar flare prediction rely on accurate labels for a given input data set, commonly obtained from the GOES/XRS X-ray flare catalog. With increasing interest in utilizing ultraviolet (UV) and extreme ultraviolet (EUV) image data as input to these models, we seek to understand if flaring activity can be defined and quantified using EUV data alone. This would allow us to move away from the GOES single pixel measurement definition of flares and use the same data we use for flare prediction for label creation. In this work, we present a Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA)-based flare catalog covering flare of GOES X-ray magnitudes C, M and X from 2010 to 2017. We use active region (AR) cutouts of full disk AIA images to match the corresponding SDO/Helioseismic and Magnetic Imager (HMI) SHARPS (Space weather HMI Active Region Patches) that have been extensively used in ML flare prediction studies, thus allowing for labeling of AR number as well as flare magnitude and timing. Flare start, peak, and end times are defined using a peak-finding algorithm on AIA time series data obtained by summing the intensity across the AIA cutouts. An extremely randomized trees (ERT) regression model is used to map SDO/AIA flare magnitudes to GOES X-ray magnitude, achieving a low-variance regression. We find an accurate overlap on 85% of M/X flares between our resulting AIA catalog and the GOES flare catalog. However, we also discover a number of large flares unrecorded or mislabeled in the GOES catalog.

    more » « less
  5. null (Ed.)
    Propensity score methods account for selection bias in observational studies. However, the consistency of the propensity score estimators strongly depends on a correct specification of the propensity score model. Logistic regression and, with increasing popularity, machine learning tools are used to estimate propensity scores. We introduce a stacked generalization ensemble learning approach to improve propensity score estimation by fitting a meta learner on the predictions of a suitable set of diverse base learners. We perform a comprehensive Monte Carlo simulation study, implementing a broad range of scenarios that mimic characteristics of typical data sets in educational studies. The population average treatment effect is estimated using the propensity score in Inverse Probability of Treatment Weighting. Our proposed stacked ensembles, especially using gradient boosting machines as a meta learner trained on a set of 12 base learner predictions, led to superior reduction of bias compared to the current state-of-the-art in propensity score estimation. Further, our simulations imply that commonly used balance measures (averaged standardized absolute mean differences) might be misleading as propensity score model selection criteria. We apply our proposed model - which we call GBM-Stack - to assess the population average treatment effect of a Supplemental Instruction (SI) program in an introductory psychology (PSY 101) course at San Diego State University. Our analysis provides evidence that moving the whole population to SI attendance would on average lead to 1.69 times higher odds to pass the PSY 101 class compared to not offering SI, with a 95% bootstrap confidence interval of (1.31, 2.20). 
    more » « less