skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Teaching American Sign Language in Mixed Reality
This paper presents a holistic system to scale up the teaching and learning of vocabulary words of American Sign Language (ASL). The system leverages the most recent mixed-reality technology to allow the user to perceive her own hands in an immersive learning environment with first- and third-person views for motion demonstration and practice. Precise motion sensing is used to record and evaluate motion, providing real-time feedback tailored to the specific learner. As part of this evaluation, learner motions are matched to features derived from the Hamburg Notation System (HNS) developed by sign-language linguists. We develop a prototype to evaluate the efficacy of mixed-reality-based interactive motion teaching. Results with 60 participants show a statistically significant improvement in learning ASL signs when using our system, in comparison to traditional desktop-based, non-interactive learning. We expect this approach to ultimately allow teaching and guided practice of thousands of signs.  more » « less
Award ID(s):
1822819 1839379
PAR ID:
10297670
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Volume:
4
Issue:
4
ISSN:
2474-9567
Page Range / eLocation ID:
1 to 27
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sign words are the building blocks of any sign language. In this work, we present wSignGen, a word-conditioned 3D American Sign Language (ASL) generation model dedicated to synthesizing realistic and grammatically accurate motion sequences for sign words. Our approach leverages a transformer-based diffusion model, trained on a curated dataset of 3D motion meshes from word-level ASL videos. By integrating CLIP, wSignGen offers two advantages: image-based generation, which is particularly useful for children learning sign language but not yet able to read, and the ability to generalize to unseen synonyms. Experiments demonstrate that wSignGen significantly outperforms the baseline model in the task of sign word generation. Moreover, human evaluation experiments show that wSignGen can generate high-quality, grammatically correct ASL signs effectively conveyed through 3D avatars. 
    more » « less
  2. We introduce a new general framework for sign recognition from monocular video using limited quantities of annotated data. The novelty of the hybrid framework we describe here is that we exploit state-of-the art learning methods while also incorporating features based on what we know about the linguistic composition of lexical signs. In particular, we analyze hand shape, orientation, location, and motion trajectories, and then use CRFs to combine this linguistically significant information for purposes of sign recognition. Our robust modeling and recognition of these sub-components of sign production allow an efficient parameterization of the sign recognition problem as compared with purely data-driven methods. This parameterization enables a scalable and extendable time-series learning approach that advances the state of the art in sign recognition, as shown by the results reported here for recognition of isolated, citation-form, lexical signs from American Sign Language (ASL). 
    more » « less
  3. We introduce a new general framework for sign recognition from monocular video using limited quantities of annotated data. The novelty of the hybrid framework we describe here is that we exploit state-of-the art learning methods while also incorporating features based on what we know about the linguistic composition of lexical signs. In particular, we analyze hand shape, orientation, location, and motion trajectories, and then use CRFs to combine this linguistically significant information for purposes of sign recognition. Our robust modeling and recognition of these sub-components of sign production allow an efficient parameterization of the sign recognition problem as compared with purely data-driven methods. This parameterization enables a scalable and extendable time-series learning approach that advances the state of the art in sign recognition, as shown by the results reported here for recognition of isolated, citation-form, lexical signs from American Sign Language (ASL). 
    more » « less
  4. The Mixed-Reality Integrated Learning Environment (MILE) developed at Florida State University is a virtual reality based, inclusive and immersive e-learning environment that promotes engaging and effective learning interactions for a diversified learner population. MILE uses a large number of interactive Non-Player Characters (NPCs) to represent diverse research-based learner archetypes and groups, and to prompt and provide feedback for in situ teaching practice. The NPC scripts in MILE are written in Linden Scripting Language (LSL), and can be quite complex, creating a significant challenge in the development and maintenance of the system. To address this challenge, we develop NPC_GEN, an automatic NPC script generation tool that takes high-level NPC descriptions as input and automatically produces LSL scripts for NPCs. In this work, we introduce NPCDL, a language that we design for NPC_GEN to give high-level descriptions of NPCs, describe how NPC_GEN translates an NPCDL description into an LSL script, and report a user study of NPC_GEN. The results of our user study indicate that with minimal training, non-technical people are able to write and modify NPCDL descriptions, which can then be used to generate LSL scripts for the NPCs: the development and maintenance of NPCs is greatly simplified with NPC_GEN. 
    more » « less
  5. null (Ed.)
    Abstract ASL-LEX is a publicly available, large-scale lexical database for American Sign Language (ASL). We report on the expanded database (ASL-LEX 2.0) that contains 2,723 ASL signs. For each sign, ASL-LEX now includes a more detailed phonological description, phonological density and complexity measures, frequency ratings (from deaf signers), iconicity ratings (from hearing non-signers and deaf signers), transparency (“guessability”) ratings (from non-signers), sign and videoclip durations, lexical class, and more. We document the steps used to create ASL-LEX 2.0 and describe the distributional characteristics for sign properties across the lexicon and examine the relationships among lexical and phonological properties of signs. Correlation analyses revealed that frequent signs were less iconic and phonologically simpler than infrequent signs and iconic signs tended to be phonologically simpler than less iconic signs. The complete ASL-LEX dataset and supplementary materials are available at https://osf.io/zpha4/ and an interactive visualization of the entire lexicon can be accessed on the ASL-LEX page: http://asl-lex.org/. 
    more » « less