skip to main content


Title: Wind River Reservation: Culturally Responsive Elementary Coding Curriculum
Fort Washakie, Fremont County School District #38, and Wyoming Indian Schools, are partnering to develop a curriculum that integrates Computer Science education standards with Indian Education for All standards. The project goal is to increase teachers’ self-efficacy for teaching computer science standards and increase pedagogical and content knowledge. Project members will share how their teams are developing, piloting, and refining curriculum units that integrate computer science with Indian Education for All standards in their unique school communities. We’ll discuss our process as well as hear from educators about successes and challenges so far. This is a partnership with American Institutes for Research, the WY Department of Education, and the nonprofit BootUp and funded by the National Science Foundation’s CSforAll RPP.  more » « less
Award ID(s):
1923375
NSF-PAR ID:
10297751
Author(s) / Creator(s):
;
Date Published:
Journal Name:
TIE21
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Doyle, Maureen ; Stephenson, Ben. (Ed.)
    This study took place in the context of a researcher-practitioner partnership (RPP) between a research organization, the Wyoming Department of Education, and three school districts serving primarily Eastern Shoshone and Northern Arapaho students on the Wind River Reservation. The goal of the RPP is to integrate instruction on the Indian Education for All Wyoming social studies standards with the Wyoming computer science standards in elementary school in ways that are culturally responsive [1]. The project team provided 12 hours of professional development across three sessions, three professional learning community sessions, lesson plans, and model projects. Teachers were expected to implement three coding projects across the school year. The study team collected data via teacher interviews, surveys, and observations of professional development and professional learning community sessions [2]. Three problems of practice that emerged from our preliminary qualitative analysis [3] include: (a) how to support student interest and engagement in computer science especially upon first introduction of a coding platform, (b) how to find time in the school day for computer science and to develop methods for integrating computer science with other subjects, and (c) how to build collaboration across classrooms and districts. The poster will discuss the adaptations teachers made to address the first two problems of practice and the RPP's strategy for addressing the third problem of practice in our next year of implementation. These findings will be of interest to researchers and practitioners working to implement culturally responsive computer science instruction in elementary schools in Indigenous communities. 
    more » « less
  2. Research suggests that introducing students to computational concepts at a young age improves the likelihood that they will become interested in computer science later on in life (Super, 1953). As such, it is becoming increasingly important to develop lessons for K-12 students that include computational thinking (Barr, 2011). The storytelling project at Montana State University integrates computational thinking skills into the Indian Education for All (IEFA) curriculum for middle school students in Montana. 1. Identify an object not in Alice and needed for a lesson. 2. Develop rough draft and provide to the model developer. 3. Develop model in 3Ds max. 4. Add model to world, and add methods as needed. References Plateau Indian Beaded Bags 5. Gather feedback from students and instructors. Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is Involved and what is the role of the computer science education community? Acm Inroads, 2(1), 48-54. Cooper, J. (n.d.). Plateau beaded bag, ca. 1930 [Photograph found in Fred Mitchell, Montana Historical Society, Helena]. Retrieved from http://mhs.mt.gov/ Portals/11/education/ABeautifulTradition/tradition%20design%20color% 20brochure.pdf Super, D. E. (1953). A theory of vocational development. American Psychologist, 8(5), 185-190. We work to develop lesson plans, plan outreach events, and find relevant literature to satisfy the content standard requirements as well as the essential understandings associated with IEFA. Furthermore, we strive to integrate basic computer science concepts into these lessons to help pique student interest in programming and computational thinking. This is done using the Alice software, a drag-and-drop programming environment that allows students to use computational thinking in a beginner-friendly interface to create animations. 
    more » « less
  3. In July 2021, Computer Science (CS) standards were officially added as a subject area within the K-12 Montana content standards. However, due to a lack of professional development and pre-service preparation in CS, schools and teachers in Montana are underprepared to implement these standards. Montana is also a unique state, since American Indian education is mandated by the state constitution in what is known as the Indian Education for All Act. We are developing elementary and middle school units and teacher training materials that simultaneously address CS, Indian Education, and other Montana content standards. In this paper, we present a unit for fourth through sixth grades using a participatory design approach. Through physical computing, students create a visual narrative of their own stories inspired by ledger art, an American Indian art medium for recording lived experiences. We discuss the affordances and challenges of an integrated approach to CS teaching and learning in elementary and middle schools in Montana. 
    more » « less
  4. Three Northern Arapaho and Eastern Shoshone–serving districts formed a researcher–practitioner partnership with the Wyoming Department of Education, the American Institutes for Research®, and BootUp Professional Development to advance the computer science (CS) education of their elementary students in ways that strengthen their Indigenous identities and knowledges. In this paper, we share experiences from 2019 to 2022 with our curriculum development, professional development (PD), and classroom implementation. The researcher–practitioner partnership developed student and teacher materials to support elementary CS lessons aligned to Wyoming’s CS standards and “Indian Education for All” social studies standards. Indigenous community members served as experts to codesign culturally relevant resources. Teachers explored the curriculum resources during three 4-hour virtual and in-person PD sessions. The sessions were designed to position the teachers as designers of CS projects they eventually implemented in their classrooms. Projects completed by students included simulated interviews with Indigenous heroes and animations of students introducing themselves in their Native languages. Teachers described several positive effects of the Scratch lessons on students, including high engagement, increased confidence, and successful application of several CS concepts. The teachers also provided enthusiastic positive reviews of the ways the CS lessons allowed students to explore their Indigenous identities while preparing to productively use technology in their futures. The Wind River Elementary CS Collaborative is one model for how a researcher–practitioner partnership can utilize diverse forms of expertise, ways of knowing, and Indigenous language to engage in curriculum design, PD, and classroom implementation that supports culturally sustaining CS pedagogies in Indigenous communities. 
    more » « less
  5. Abstract

    Global science education reform calls for developing student knowledge-in-use that applies the integrated knowledge of core ideas and scientific practices to make sense of phenomena or solve problems. Knowledge-in-use development requires a long-term, standards-aligned, coherent learning system, including curriculum and instruction, assessment, and professional learning. This paper addresses the challenge of transforming standards into classrooms for knowledge-in-use and presents an iterative design process for developing a coherent and standards-aligned learning system. Using a project-based learning approach, we present a theory-driven, empirically validated learning system aligned with the U.S. science standards, consisting of four consecutive curriculum and instruction materials, assessments, and professional learning to support students’ knowledge-in-use in high school chemistry. We also present the iterative development and testing process with empirical evidence to support the effectiveness of our learning system in a five-year NSF-funded research project. This paper discusses the theoretical perspectives of developing an NGSS-aligned, coherent, and effective learning system and recaps the development and testing process by unpacking all essential components in our learning system. We conclude that our theory-driven and empirically validated learning system would inform high school teachers and researchers across countries in transforming their local science standards into curriculum materials to support students’ knowledge-in-use development.

     
    more » « less