skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: HELLO: improved neural network architectures and methodologies for small variant calling
Abstract Background Modern Next Generation- and Third Generation- Sequencing methods such as Illumina and PacBio Circular Consensus Sequencing platforms provide accurate sequencing data. Parallel developments in Deep Learning have enabled the application of Deep Neural Networks to variant calling, surpassing the accuracy of classical approaches in many settings. DeepVariant, arguably the most popular among such methods, transforms the problem of variant calling into one of image recognition where a Deep Neural Network analyzes sequencing data that is formatted as images, achieving high accuracy. In this paper, we explore an alternative approach to designing Deep Neural Networks for variant calling, where we use meticulously designed Deep Neural Network architectures and customized variant inference functions that account for the underlying nature of sequencing data instead of converting the problem to one of image recognition. Results Results from 27 whole-genome variant calling experiments spanning Illumina, PacBio and hybrid Illumina-PacBio settings suggest that our method allows vastly smaller Deep Neural Networks to outperform the Inception-v3 architecture used in DeepVariant for indel and substitution-type variant calls. For example, our method reduces the number of indel call errors by up to 18%, 55% and 65% for Illumina, PacBio and hybrid Illumina-PacBio variant calling respectively, compared to a similarly trained DeepVariant pipeline. In these cases, our models are between 7 and 14 times smaller. Conclusions We believe that the improved accuracy and problem-specific customization of our models will enable more accurate pipelines and further method development in the field. HELLO is available at https://github.com/anands-repo/hello  more » « less
Award ID(s):
1725729
PAR ID:
10297787
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
BMC Bioinformatics
Volume:
22
Issue:
1
ISSN:
1471-2105
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Next-generation sequencing has allowed genetic studies to collect genome sequencing data from a large number of individuals. However, raw sequencing data are not usually interpretable due to fragmentation of the genome and technical biases; therefore, analysis of these data requires many computational approaches. First, for each sequenced individual, sequencing data are aligned and further processed to account for technical biases. Then, variant calling is performed to obtain information on the positions of genetic variants and their corresponding genotypes. Quality control (QC) is applied to identify individuals and genetic variants with sequencing errors. These procedures are necessary to generate accurate variant calls from sequencing data, and many computational approaches have been developed for these tasks. This review will focus on current widely used approaches for variant calling and QC. 
    more » « less
  2. We propose firefly neural architecture descent, a general framework for progressively and dynamically growing neural networks to jointly optimize the networks' parameters and architectures. Our method works in a steepest descent fashion, which iteratively finds the best network within a functional neighborhood of the original network that includes a diverse set of candidate network structures. By using Taylor approximation, the optimal network structure in the neighborhood can be found with a greedy selection procedure. We show that firefly descent can flexibly grow networks both wider and deeper, and can be applied to learn accurate but resource-efficient neural architectures that avoid catastrophic forgetting in continual learning. Empirically, firefly descent achieves promising results on both neural architecture search and continual learning. In particular, on a challenging continual image classification task, it learns networks that are smaller in size but have higher average accuracy than those learned by the state-of-the-art methods. 
    more » « less
  3. Abstract Long single-molecular sequencing technologies, such as PacBio circular consensus sequencing (CCS) and nanopore sequencing, are advantageous in detecting DNA 5-methylcytosine in CpGs (5mCpGs), especially in repetitive genomic regions. However, existing methods for detecting 5mCpGs using PacBio CCS are less accurate and robust. Here, we present ccsmeth, a deep-learning method to detect DNA 5mCpGs using CCS reads. We sequence polymerase-chain-reaction treated and M.SssI-methyltransferase treated DNA of one human sample using PacBio CCS for training ccsmeth. Using long (≥10 Kb) CCS reads, ccsmeth achieves 0.90 accuracy and 0.97 Area Under the Curve on 5mCpG detection at single-molecule resolution. At the genome-wide site level, ccsmeth achieves >0.90 correlations with bisulfite sequencing and nanopore sequencing using only 10× reads. Furthermore, we develop a Nextflow pipeline, ccsmethphase, to detect haplotype-aware methylation using CCS reads, and then sequence a Chinese family trio to validate it. ccsmeth and ccsmethphase can be robust and accurate tools for detecting DNA 5-methylcytosines. 
    more » « less
  4. Abstract:The newer technologies such as data mining, machine learning, artificial intelligence and data analytics have revolutionized medical sector in terms of using the existing big data to predict the various patterns emerging from the datasets available inthe healthcare repositories. The predictions based on the existing datasets in the healthcare sector have rendered several benefits such as helping clinicians to make accurate and informed decisions while managing the patients’ health leading to better management of patients’ wellbeing and health-care coordination. The millions of people have been affected by the coronary artery disease (CAD). There are several machine learning including ensemble learning approach and deep neural networks-based algorithms have shown promising outcomes in improving prediction accuracy for early diagnosis of CAD. This paper analyses the deep neural network variant DRN, Rider Optimization Algorithm-Neural network (RideNN) and Deep Neural Network-Fuzzy Neural Network (DNFN) with application of ensemble learning method for improvement in the prediction accuracy of CAD. The experimental outcomes showed the proposed ensemble classifier achieved the highest accuracy compared to the other machine learning models. Keywords:Heart disease prediction, Deep Residual Network (DRN), Ensemble classifiers, coronary artery disease. 
    more » « less
  5. Abstract Deep learning has become a widespread tool in both science and industry. However, continued progress is hampered by the rapid growth in energy costs of ever-larger deep neural networks. Optical neural networks provide a potential means to solve the energy-cost problem faced by deep learning. Here, we experimentally demonstrate an optical neural network based on optical dot products that achieves 99% accuracy on handwritten-digit classification using ~3.1 detected photons per weight multiplication and ~90% accuracy using ~0.66 photons (~2.5 × 10 −19  J of optical energy) per weight multiplication. The fundamental principle enabling our sub-photon-per-multiplication demonstration—noise reduction from the accumulation of scalar multiplications in dot-product sums—is applicable to many different optical-neural-network architectures. Our work shows that optical neural networks can achieve accurate results using extremely low optical energies. 
    more » « less