Understanding how political attention is divided and over what subjects is crucial for research on areas such as agenda setting, framing, and political rhetoric. Existing methods for measuring attention, such as manual labeling according to established codebooks, are expensive and can be restrictive. We describe two computational models that automatically distinguish topics in politicians' social media content. Our models---one supervised classifier and one unsupervised topic model---provide different benefits. The supervised classifier reduces the labor required to classify content according to pre-determined topic list. However, tweets do more than communicate policy positions. Our unsupervised model uncovers both political topics and other Twitter uses (e.g., constituent service). These models are effective, inexpensive computational tools for political communication and social media research. We demonstrate their utility and discuss the different analyses they afford by applying both models to the tweets posted by members of the 115th U.S. Congress.
more »
« less
Measuring Agenda Setting in Interactive Political Communication
Although strategies exist to measure actors' efforts to set policy, media, and lawmaking agendas, political scientists lack a method for identifying and accurately measuring another form of agenda setting that lies under the surface anytime two people talk. Within interactions, such as debates, deliberations, and discussions, actors can set the agenda by shifting others' attention to their preferred topics. In this article, I use a topic model that locates where topic shifts occur within an interaction in order to measure the relative agenda-setting power of actors. Validation exercises show that the model accurately identifies topic shifts and infers coherent topics. Three empirical applications also validate the agenda-setting measure within different political settings: U.S. presidential debates, in-person deliberations, and online discussions. These applications show that successfully setting the agenda can shape an interaction's outcomes, demonstrating the importance of continued research on this form of agenda setting.
more »
« less
- Award ID(s):
- 1938811
- PAR ID:
- 10297835
- Date Published:
- Journal Name:
- American Journal of Political Science
- ISSN:
- 0092-5853
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A thorough understanding of social media discussions and the demographics of the users involved in these discussions has become critical for many applications like business or political analysis. Such an understanding and its ramifications on the real world can be enabled through the automatic summarization of Social Media. Trending topics are offered as a high level content recommendation system where users are suggested to view related content if they deem the displayed topics interesting. However, identifying the characteristics of the users focused on each topic can boost the importance even for topics that might not be popular or bursty. We define a way to characterize groups of users that are focused in such topics and propose an efficient and accurate algorithm to extract such communities. Through qualitative and quantitative experimentation we observe that topics with a strong community focus are interesting and more likely to catch the attention of users.more » « less
-
Researchers using social media data want to understand the discussions occurring in and about their respective fields. These domain experts often turn to topic models to help them see the entire landscape of the conversation, but unsupervised topic models often produce topic sets that miss topics experts expect or want to see. To solve this problem, we propose Guided Topic-Noise Model (GTM), a semi-supervised topic model designed with large domain-specific social media data sets in mind. The input to GTM is a set of topics that are of interest to the user and a small number of words or phrases that belong to those topics. These seed topics are used to guide the topic generation process, and can be augmented interactively, expanding the seed word list as the model provides new relevant words for different topics. GTM uses a novel initialization and a new sampling algorithm called Generalized Polya Urn (GPU) seed word sampling to produce a topic set that includes expanded seed topics, as well as new unsupervised topics. We demonstrate the robustness of GTM on open-ended responses from a public opinion survey and four domain-specific Twitter data sets.more » « less
-
Amidst growing concern over media manipulation, NLP attention has focused on overt strategies like censorship and “fake news”. Here, we draw on two concepts from the political science literature to explore subtler strategies for government media manipulation: agenda-setting (selecting what topics to cover) and framing (deciding how topics are covered). We analyze 13 years (100K articles) of the Russian newspaper Izvestia and identify a strategy of distraction: articles mention the U.S. more frequently in the month directly following an economic downturn in Russia. We introduce embedding-based methods for cross-lingually projecting English frames to Russian, and discover that these articles emphasize U.S. moral failings and threats to the U.S. Our work offers new ways to identify subtle media manipulation strategies at the intersection of agenda-setting and framing.more » « less
-
Textual information, such as news articles, social media, and online forum discussions, often comes in a form of sequential text streams. Events happening in the real world trigger a set of articles talking about them or related events over a period of time. In the meanwhile, even one event is fading out, another related event could raise public attention. Hence, it is important to leverage the information about how topics influence each other over time to obtain a better understanding and modeling of document streams. In this paper, we explicitly model mutual influence among topics over time, with the purpose to better understand how events emerge, fade and inherit. We propose a temporal point process model, referred to as Correlated Temporal Topic Model (CoTT), to capture the temporal dynamics in a latent topic space. Our model allows for efficient online inference, scaling to continuous time document streams. Extensive experiments on real-world data reveal the effectiveness of our model in recovering meaningful temporal dependency structure among topics and documents.more » « less
An official website of the United States government

