skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: HIVE-4-MAT: Advancing the Ontology Infrastructure for Materials Science
This paper introduces Helping Interdisciplinary Vocabulary Engineering for Materials Science (HIVE-4-MAT), an automatic linked data ontology application. The paper provides contextual background for materials science, shared ontology infrastructures, and knowledge extraction applications. HIVE-4-MAT's three key features are reviewed: 1) Vocabulary browsing, 2) Term search and selection, and 3) Knowledge Extraction/Indexing, as well as the basics of named entity recognition (NER). The discussion elaborates on the importance of ontology infrastructures and steps taken to enhance knowledge extraction. The conclusion highlights next steps surveying the ontology landscape, including NER work as a step toward relation extraction (RE), and support for better ontologies.  more » « less
Award ID(s):
1940239
PAR ID:
10298006
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Garoufallou, E; Ovalle-Perandones, M.A.
Date Published:
Journal Name:
Metadata and Semantic Research. MTSR 2020. Communications in Computer and Information Science
Volume:
1335
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Purpose The output of academic literature has increased significantly due to digital technology, presenting researchers with a challenge across every discipline, including materials science, as it is impossible to manually read and extract knowledge from millions of published literature. The purpose of this study is to address this challenge by exploring knowledge extraction in materials science, as applied to digital scholarship. An overriding goal is to help inform readers about the status knowledge extraction in materials science. Design/methodology/approach The authors conducted a two-part analysis, comparing knowledge extraction methods applied materials science scholarship, across a sample of 22 articles; followed by a comparison of HIVE-4-MAT, an ontology-based knowledge extraction and MatScholar, a named entity recognition (NER) application. This paper covers contextual background, and a review of three tiers of knowledge extraction (ontology-based, NER and relation extraction), followed by the research goals and approach. Findings The results indicate three key needs for researchers to consider for advancing knowledge extraction: the need for materials science focused corpora; the need for researchers to define the scope of the research being pursued, and the need to understand the tradeoffs among different knowledge extraction methods. This paper also points to future material science research potential with relation extraction and increased availability of ontologies. Originality/value To the best of the authors’ knowledge, there are very few studies examining knowledge extraction in materials science. This work makes an important contribution to this underexplored research area. 
    more » « less
  2. This paper explores computational, semantic labeling for scholarly big data in materials science. We report on a baseline comparative analysis involving ontology-based automatic indexing with the Helping Interdisciplinary Vocabulary Engineering (HIVE-4-MAT) application, using the RAKE algorithm, and the MATScholar system, which uses named entity recognition (NER), supported by an RNN (Recursive Neural Network). Results demonstrate that ontology-based automatic indexing requires less preparation time and provides useful output supporting recall; while NER/RNN requires greater preparation, but produces more precise labels that are likely better for deep learning. 
    more » « less
  3. Researchers across nearly every discipline seek to leverage ontologies for knowledge discovery and computational tasks; yet, the number of machine readable materials science ontologies is limited. The work presented in this paper explores the Processing, Structure, Properties and Performance (PSPP) framework for accelerating the development of materials science ontologies. We pursue a case study framed by the creation of an Aerogel ontology and a Battery Cathode ontology and demonstrate the Helping Interdisciplinary Vocabulary Engineer for Materials Science (HIVE4MAT) as a proof of concept showing PSPP relationships. The paper includes background context covering materials science, the PSPP framework, and faceted analysis for ontologies. We report our research objectives, methods, research procedures, and results. The findings indicate that the PSPP framework offers a rubric that may help guide and potentially accelerate ontology development. 
    more » « less
  4. Researchers across nearly every discipline seek to leverage ontologies for knowledge discovery and computational tasks; yet, the number of machine readable materials science ontologies is limited. The work presented in this paper explores the Processing, Structure, Properties and Performance (PSPP) framework for accelerating the development of materials science ontologies. We pursue a case study framed by the creation of an Aerogel ontology and a Battery Cathode ontology and demonstrate the Helping Interdisciplinary Vocabulary Engineer for Materials Science (HIVE4MAT) as a proof of concept showing PSPP relationships. The paper includes background context covering materials science, the PSPP framework, and faceted analysis for ontologies. We report our research objectives, methods, research procedures, and results. The findings indicate that the PSPP framework offers a rubric that may help guide and potentially accelerate ontology development. 
    more » « less
  5. In this position paper, we describe research on knowledge graph-empowered materials science prediction and discovery. The research consists of several key components including ontology mapping, materials data annotation, and information extraction from unstructured scholarly articles. We argue that although big data generated by simulations and experiments have motivated and accelerated the data-driven science, the distribution and heterogeneity of materials science-related big data hinders major advancements in the field. Knowledge graphs, as semantic hubs, integrate disparate data and provide a feasible solution to addressing this challenge. We design a knowledge-graph based approach for data discovery, extraction, and integration in materials science. 
    more » « less