Large language models (LLMs) have recently taken the world by storm. They can generate coherent text, hold meaningful conversations, and be taught concepts and basic sets of instructions—such as the steps of an algorithm. In this context, we are interested in exploring the application of LLMs to graph drawing algorithms by performing experiments on ChatGPT. These algorithms are used to improve the readability of graph visualizations. The probabilistic nature of LLMs presents challenges to implementing algorithms correctly, but we believe that LLMs’ ability to learn from vast amounts of data and apply complex operations may lead to interesting graph drawing results. For example, we could enable users with limited coding backgrounds to use simple natural language to create effective graph visualizations. Natural language specification would make data visualization more accessible and user-friendly for a wider range of users. Exploring LLMs’ capabilities for graph drawing can also help us better understand how to formulate complex algorithms for LLMs; a type of knowledge that could transfer to other areas of computer science. Overall, our goal is to shed light on the exciting possibilities of using LLMs for graph drawing while providing a balanced assessment of the challenges and opportunities they present. A free copy of this paper with all supplemental materials to reproduce our results is available at https://osf.io/n5rxd/.
more »
« less
Lifelong and Continual Learning Dialogue Systems: Learning during Conversation
Dialogue systems, also called chatbots, are now used in a wide range of applications. However, they still have some major weaknesses. One key weakness is that they are typically trained from manually-labeled data and/or written with handcrafted rules, and their knowledge bases (KBs) are also compiled by human experts. Due to the huge amount of manual effort involved, they are difficult to scale and also tend to produce many errors ought to their limited ability to understand natural language and the limited knowledge in their KBs. Thus, the level of user satisfactory is often low. In this paper, we propose to dramatically improve the situation by endowing the chatbots the ability to continually learn (1) new world knowledge, (2) new language expressions to ground them to actions, and (3) new conversational skills, during conversation by themselves so that as they chat more and more with users, they become more and more knowledgeable and are better and better able to understand diverse natural language expressions and to improve their conversational skills.
more »
« less
- Award ID(s):
- 1838770
- PAR ID:
- 10298069
- Date Published:
- Journal Name:
- Thirty-Fifth AAAI Conference on Artificial Intelligence
- Page Range / eLocation ID:
- 15058-15063
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In recent years, the popularity of AI-enabled conversational agents or chatbots has risen as an alternative to traditional online surveys to elicit information from people. However, there is a gap in using single-agent chatbots to converse and gather multi-faceted information across a wide variety of topics. Prior works suggest that single-agent chatbots struggle to understand user intentions and interpret human language during a multi-faceted conversation. In this work, we investigated how multi-agent chatbot systems can be utilized to conduct a multi-faceted conversation across multiple domains. To that end, we conducted a Wizard of Oz study to investigate the design of a multi-agent chatbot for gathering public input across multiple high-level domains and their associated topics. Next, we designed, developed, and evaluated CommunityBots - a multi-agent chatbot platform where each chatbot handles a different domain individually. To manage conversation across multiple topics and chatbots, we proposed a novel Conversation and Topic Management (CTM) mechanism that handles topic-switching and chatbot-switching based on user responses and intentions. We conducted a between-subject study comparing CommunityBots to a single-agent chatbot baseline with 96 crowd workers. The results from our evaluation demonstrate that CommunityBots participants were significantly more engaged, provided higher quality responses, and experienced fewer conversation interruptions while conversing with multiple different chatbots in the same session. We also found that the visual cues integrated with the interface helped the participants better understand the functionalities of the CTM mechanism, which enabled them to perceive changes in textual conversation, leading to better user satisfaction. Based on the empirical insights from our study, we discuss future research avenues for multi-agent chatbot design and its application for rich information elicitation.more » « less
-
This paper presents an experiential learning pedagogy that teaches undergraduate business management information systems students hands-on AI skills through the lens of sustainability. The learning modules aim to empower undergraduate business students to gain interest and confidence in AI knowledge, skills, and careers, to sharpen their higher order thinking abilities, and to help them gain a deeper understanding of sustainability issues. Students learn AI through developing chatbots that address pressing sustainability issues within their own communities. Results of the pilot study indicate that students have increased self-efficacy in AI, more positive attitudes towards AI learning and AI-related careers, enhanced sustainability awareness, and more confidence in their ability to innovate.more » « less
-
Social anxiety (SA) has become increasingly prevalent. Traditional coping strategies often face accessibility challenges. Generative AI (GenAI), known for their knowledgeable and conversational capabilities, are emerging as alternative tools for mental well-being. With the increased integration of GenAI, it is important to examine individuals’ attitudes and trust in GenAI chatbots’ support for SA. Through a mixed-method approach that involved surveys (n = 159) and interviews (n = 17), we found that individuals with severe symptoms tended to trust and embrace GenAI chatbots more readily, valuing their non-judgmental support and perceived emotional comprehension. However, those with milder symptoms prioritized technical reliability. We identified factors influencing trust, such as GenAI chatbots’ ability to generate empathetic responses and its context-sensitive limitations, which were particularly important among individuals with SA. We also discuss the design implications and use of GenAI chatbots in fostering cognitive and emotional trust, with practical and design considerations.more » « less
-
Abstract The EngageAI Institute focuses on AI‐driven narrative‐centered learning environments that create engaging story‐based problem‐solving experiences to support collaborative learning. The institute's research has three complementary strands. First, the institute creates narrative‐centered learning environments that generate interactive story‐based problem scenarios to elicit rich communication, encourage coordination, and spark collaborative creativity. Second, the institute creates virtual embodied conversational agent technologies with multiple modalities for communication (speech, facial expression, gesture, gaze, and posture) to support student learning. Embodied conversational agents are driven by advances in natural language understanding, natural language generation, and computer vision. Third, the institute is creating an innovative multimodal learning analytics framework that analyzes parallel streams of multimodal data derived from students’ conversations, gaze, facial expressions, gesture, and posture as they interact with each other, with teachers, and with embodied conversational agents. Woven throughout the institute's activities is a strong focus on ethics, with an emphasis on creating AI‐augmented learning that is deeply informed by considerations of fairness, accountability, transparency, trust, and privacy. The institute emphasizes broad participation and diverse perspectives to ensure that advances in AI‐augmented learning address inequities in STEM. The institute brings together a multistate network of universities, diverse K‐12 school systems, science museums, and nonprofit partners. Key to all of these endeavors is an emphasis on diversity, equity, and inclusion.more » « less
An official website of the United States government

