While offering the potential to support learning interactions, emerging AI applications like Large Language Models (LLMs) come with ethical concerns. Grounding technology design in human values can address AI ethics and ensure adoption. To this end, we apply Value‐Sensitive Design—involving empirical, conceptual and technical investigations—to centre human values in the development and evaluation of LLM‐based chatbots within a high school environmental science curriculum. Representing multiple perspectives and expertise, the chatbots help students refine their causal models of climate change's impact on local marine ecosystems, communities and individuals. We first perform an empirical investigation leveraging participatory design to explore the values that motivate students and educators to engage with the chatbots. Then, we conceptualize the values that emerge from the empirical investigation by grounding them in research in ethical AI design, human values, human‐AI interactions and environmental education. Findings illuminate considerations for the chatbots to support students' identity development, well‐being, human–chatbot relationships and environmental sustainability. We further map the values onto design principles and illustrate how these principles can guide the development and evaluation of the chatbots. Our research demonstrates how to conduct contextual, value‐sensitive inquiries of emergent AI technologies in educational settings. Practitioner notesWhat is already known about this topicGenerative artificial intelligence (GenAI) technologies like Large Language Models (LLMs) can not only support learning, but also raise ethical concerns such as transparency, trust and accountability.Value‐sensitive design (VSD) presents a systematic approach to centring human values in technology design.What this paper addsWe apply VSD to design LLM‐based chatbots in environmental education and identify values central to supporting students' learning.We map the values emerging from the VSD investigations to several stages of GenAI technology development: conceptualization, development and evaluation.Implications for practice and/or policyIdentity development, well‐being, human–AI relationships and environmental sustainability are key values for designing LLM‐based chatbots in environmental education.Using educational stakeholders' values to generate design principles and evaluation metrics for learning technologies can promote technology adoption and engagement. 
                        more » 
                        « less   
                    This content will become publicly available on April 25, 2026
                            
                            Understanding Attitudes and Trust of Generative AI Chatbots for Social Anxiety Support
                        
                    
    
            Social anxiety (SA) has become increasingly prevalent. Traditional coping strategies often face accessibility challenges. Generative AI (GenAI), known for their knowledgeable and conversational capabilities, are emerging as alternative tools for mental well-being. With the increased integration of GenAI, it is important to examine individuals’ attitudes and trust in GenAI chatbots’ support for SA. Through a mixed-method approach that involved surveys (n = 159) and interviews (n = 17), we found that individuals with severe symptoms tended to trust and embrace GenAI chatbots more readily, valuing their non-judgmental support and perceived emotional comprehension. However, those with milder symptoms prioritized technical reliability. We identified factors influencing trust, such as GenAI chatbots’ ability to generate empathetic responses and its context-sensitive limitations, which were particularly important among individuals with SA. We also discuss the design implications and use of GenAI chatbots in fostering cognitive and emotional trust, with practical and design considerations. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2418582
- PAR ID:
- 10597554
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400713941
- Page Range / eLocation ID:
- 1 to 21
- Format(s):
- Medium: X
- Location:
- Yokohama Japan
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Generative AI (genAI) tools, such as ChatGPT or Copilot, are advertised to improve developer productivity and are being integrated into software development. However, misaligned trust, skepticism, and usability concerns can impede the adoption of such tools. Research also indicates that AI can be exclusionary, failing to support diverse users adequately. One such aspect of diversity is cognitive diversity -- variations in users' cognitive styles -- that leads to divergence in perspectives and interaction styles. When an individual's cognitive style is unsupported, it creates barriers to technology adoption. Therefore, to understand how to effectively integrate genAI tools into software development, it is first important to model what factors affect developers' trust and intentions to adopt genAI tools in practice? We developed a theoretically grounded statistical model to (1) identify factors that influence developers' trust in genAI tools and (2) examine the relationship between developers' trust, cognitive styles, and their intentions to use these tools in their work. We surveyed software developers (N=238) at two major global tech organizations: GitHub Inc. and Microsoft; and employed Partial Least Squares-Structural Equation Modeling (PLS-SEM) to evaluate our model. Our findings reveal that genAI's system/output quality, functional value, and goal maintenance significantly influence developers' trust in these tools. Furthermore, developers' trust and cognitive styles influence their intentions to use these tools in their work. We offer practical suggestions for designing genAI tools for effective use and inclusive user experience.more » « less
- 
            Generative AI (genAI) tools, such as ChatGPT or Copilot, are advertised to improve developer productivity and are being integrated into software development. However, misaligned trust, skepticism, and usability concerns can impede the adoption of such tools. Research also indicates that AI can be exclusionary, failing to support diverse users adequately. One such aspect of diversity is cognitive diversity -- variations in users' cognitive styles -- that leads to divergence in perspectives and interaction styles. When an individual's cognitive style is unsupported, it creates barriers to technology adoption. Therefore, to understand how to effectively integrate genAI tools into software development, it is first important to model what factors affect developers' trust and intentions to adopt genAI tools in practice? We developed a theoretically grounded statistical model to (1) identify factors that influence developers' trust in genAI tools and (2) examine the relationship between developers' trust, cognitive styles, and their intentions to use these tools in their work. We surveyed software developers (N=238) at two major global tech organizations: GitHub Inc. and Microsoft; and employed Partial Least Squares-Structural Equation Modeling (PLS-SEM) to evaluate our model. Our findings reveal that genAI's system/output quality, functional value, and goal maintenance significantly influence developers' trust in these tools. Furthermore, developers' trust and cognitive styles influence their intentions to use these tools in their work. We offer practical suggestions for designing genAI tools for effective use and inclusive user experience.more » « less
- 
            Generative AI (GenAI) has brought opportunities and challenges for higher education as it integrates into teaching and learning environments. As instructors navigate this new landscape, understanding their engagement with and attitudes toward GenAI is crucial. We surveyed 178 instructors from a single U.S. university to examine their current practices, perceptions, trust, and distrust of GenAI in higher education in March 2024. While most surveyed instructors reported moderate to high familiarity with GenAI-related concepts, their actual use of GenAI tools for direct instructional tasks remained limited. Our quantitative results show that trust and distrust in GenAI are related yet distinct; high trust does not necessarily imply low distrust, and vice versa. We also found significant differences in surveyed instructors' familiarity with GenAI across different trust and distrust groups. Our qualitative results show nuanced manifestations of trust and distrust among surveyed instructors and various approaches to support calibrated trust in GenAI. We discuss practical implications focused on (dis)trust calibration among instructors.more » « less
- 
            Social chatbots are designed to build emotional bonds with users, and thus it is particularly important to design these technologies so as to elicit positive perceptions from users. In the current study, we investigate the impacts transparent explanations of chatbots’ mechanisms have on users’ perceptions of the chatbots. A total of 914 participants were recruited from Amazon Mechanical Turk. They were randomly assigned to observe conversation between a hypothetical chatbot and user in one of the two-by-two experimental conditions: whether the participants received an explanation about how the chatbot was trained and whether the chatbot was framed as an intelligent entity or a machine. A fifth group, who believed they were observing interactions between two humans, served as a control. Analyses of participants’ responses to post-observation survey indicated that transparency positively affected perceptions of social chatbots by leading users to (1) find the chatbot less creepy, (2) feel greater affinity to the chatbot, and (3) perceive the chatbot as more socially intelligent, thought these effects were small. Importantly, transparency appeared to have a larger effect in increasing the perceived social intelligence among participants with lower prior AI knowledge. These findings have implications for the design of future social chatbots and support the addition of transparency and explanation for chatbot users.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
