Abstract Plant functional traits can predict community assembly and ecosystem functioning and are thus widely used in global models of vegetation dynamics and land–climate feedbacks. Still, we lack a global understanding of how land and climate affect plant traits. A previous global analysis of six traits observed two main axes of variation: (1) size variation at the organ and plant level and (2) leaf economics balancing leaf persistence against plant growth potential. The orthogonality of these two axes suggests they are differently influenced by environmental drivers. We find that these axes persist in a global dataset of 17 traits across more than 20,000 species. We find a dominant joint effect of climate and soil on trait variation. Additional independent climate effects are also observed across most traits, whereas independent soil effects are almost exclusively observed for economics traits. Variation in size traits correlates well with a latitudinal gradient related to water or energy limitation. In contrast, variation in economics traits is better explained by interactions of climate with soil fertility. These findings have the potential to improve our understanding of biodiversity patterns and our predictions of climate change impacts on biogeochemical cycles.
The three major axes of terrestrial ecosystem function
Abstract The leaf economics spectrum 1,2 and the global spectrum of plant forms and functions 3 revealed fundamental axes of variation in plant traits, which represent different ecological strategies that are shaped by the evolutionary development of plant species 2 . Ecosystem functions depend on environmental conditions and the traits of species that comprise the ecological communities 4 . However, the axes of variation of ecosystem functions are largely unknown, which limits our understanding of how ecosystems respond as a whole to anthropogenic drivers, climate and environmental variability 4,5 . Here we derive a set of ecosystem functions 6 from a dataset of surface gas exchange measurements across major terrestrial biomes. We find that most of the variability within ecosystem functions (71.8%) is captured by three key axes. The first axis reflects maximum ecosystem productivity and is mostly explained by vegetation structure. The second axis reflects ecosystem water-use strategies and is jointly explained by variation in vegetation height and climate. The third axis, which represents ecosystem carbon-use efficiency, features a gradient related to aridity, and is explained primarily by variation in vegetation structure. We show that two state-of-the-art land surface models reproduce the first and most important axis of ecosystem functions. more »
- Authors:
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publication Date:
- NSF-PAR ID:
- 10298085
- Journal Name:
- Nature
- ISSN:
- 0028-0836
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Vegetation processes are fundamentally limited by nutrient and water availability, the uptake of which is mediated by plant roots in terrestrial ecosystems. While tropical forests play a central role in global water, carbon, and nutrient cycling, we know very little about tradeoffs and synergies in root traits that respond to resource scarcity. Tropical trees face a unique set of resource limitations, with rock-derived nutrients and moisture seasonality governing many ecosystem functions, and nutrient versus water availability often separated spatially and temporally. Root traits that characterize biomass, depth distributions, production and phenology, morphology, physiology, chemistry, and symbiotic relationships can be predictive of plants’ capacities to access and acquire nutrients and water, with links to aboveground processes like transpiration, wood productivity, and leaf phenology. In this review, we identify an emerging trend in the literature that tropical fine root biomass and production in surface soils are greatest in infertile or sufficiently moist soils. We also identify interesting paradoxes in tropical forest root responses to changing resources that merit further exploration. For example, specific root length, which typically increases under resource scarcity to expand the volume of soil explored, instead can increase with greater base cation availability, both across natural tropical forest gradientsmore »
-
Abstract. Current peatland models generally treat vegetation as static, although plant community structure is known to alter as a response to environmental change. Because the vegetation structure and ecosystem functioning are tightly linked, realistic projections of peatland response to climate change require the inclusion of vegetation dynamics in ecosystem models. In peatlands, Sphagnum mosses are key engineers. Moss community composition primarily follows habitat moisture conditions. The known species habitat preference along the prevailing moisture gradient might not directly serve as a reliable predictor for future species compositions, as water table fluctuation is likely to increase. Hence, modelling the mechanisms that control the habitat preference of Sphagna is a good first step for modelling community dynamics in peatlands. In this study, we developed the Peatland Moss Simulator (PMS), which simulates the community dynamics of the peatland moss layer. PMS is a process-based model that employs a stochastic, individual-based approach for simulating competition within the peatland moss layer based on species differences in functional traits. At the shoot-level, growth and competition were driven by net photosynthesis, which was regulated by hydrological processes via the capitulum water content. The model was tested by predicting the habitat preferences of Sphagnum magellanicum and Sphagnum fallax – twomore »
-
Abstract Background and Aims Andropogon gerardii is a highly productive C4 grass species with a large geographic range throughout the North American Great Plains, a biome characterized by a variable temperate climate. Plant traits are often invoked to explain growth rates and competitive abilities within broad climate gradients. For example, plant competition models typically predict that species with large geographic ranges benefit from variation in traits underlying high growth potential. Here, we examined the relationship between climate variability and leaf-level traits in A. gerardii, emphasizing how leaf-level microanatomical traits serve as a mechanism that may underlie variation in commonly measured traits, such as specific leaf area (SLA). Methods Andropogon gerardii leaves were collected in August 2017 from Cedar Creek Ecosystem Science Reserve (MN), Konza Prairie Biological Station (KS), Platte River Prairie (NE) and Rocky Mountain Research Station (SD). Leaves from ten individuals from each site were trimmed, stained and prepared for fluorescent confocal microscopy to analyse internal leaf anatomy. Leaf microanatomical data were compared with historical and growing season climate data extracted from PRISM spatial climate models. Key Results Microanatomical traits displayed large variation within and across sites. According to AICc (Akaike’s information criterion adjusted for small sample sizes) selectionmore »
-
Coastal salt marshes are distributed widely across the globe and are considered essential habitat for many fish and crustacean species. Yet, the literature on fishery support by salt marshes has largely been based on a few geographically distinct model systems, and as a result, inadequately captures the hierarchical nature of salt marsh pattern, process, and variation across space and time. A better understanding of geographic variation and drivers of commonalities and differences across salt marsh systems is essential to informing future management practices. Here, we address the key drivers of geographic variation in salt marshes: hydroperiod, seascape configuration, geomorphology, climatic region, sediment supply and riverine input, salinity, vegetation composition, and human activities. Future efforts to manage, conserve, and restore these habitats will require consideration of how environmental drivers within marshes affect the overall structure and subsequent function for fisheries species. We propose a future research agenda that provides both the consistent collection and reporting of sources of variation in small-scale studies and collaborative networks running parallel studies across large scales and geographically distinct locations to provide analogous information for data poor locations. These comparisons are needed to identify and prioritize restoration or conservation efforts, identify sources of variation among regions,more »