skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Notions of numerical Iitaka dimension do not coincide
Let X be a smooth projective variety. The Iitaka dimension of a divisor D is an important invariant, but it does not only depend on the numerical class of D. However, there are several definitions of “numerical Iitaka dimension”, depending only on the numerical class. In this note, we show that there exists a pseuodoeffective R-divisor for which these invariants take different values. The key is the construction of an example of a pseudoeffective R-divisor D_+ for which h^0(X,mD_+ + A)$ is bounded above and below by multiples of m^{3/2} for any sufficiently ample A.  more » « less
Award ID(s):
1912476
PAR ID:
10298161
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of Algebraic Geometry
ISSN:
1056-3911
Page Range / eLocation ID:
1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The flex divisor$$R_{\textrm flex}$$ of a primitively polarized K3 surface $(X,L)$ is, generically, the set of all points $$x\in X$$ for which there exists a pencil $$V\subset |L|$$ whose base locus is $$\{x\}$$. We show that if $L^2=2d$ then $$R_{\textrm flex}\in |n_dL|$$ with $$ \begin{align*} &n_d= \frac{(2d)!(2d+1)!}{d!^2(d+1)!^2} =(2d+1)C(d)^2,\end{align*}$$where $C(d)$ is the Catalan number. We also show that there is a well-defined notion of flex divisor over the whole moduli space $$F_{2d}$$ of polarized K3 surfaces. 
    more » « less
  2. Let $$\phi(x,y)$$ be a continuous function, smooth away from the diagonal, such that, for some $$\alpha>0$$, the associated generalized Radon transforms \begin{equation} \label{Radon} R_t^{\phi}f(x)=\int_{\phi(x,y)=t} f(y) \psi(y) d\sigma_{x,t}(y) \end{equation} map $$L^2({\mathbb R}^d) \to H^{\alpha}({\mathbb R}^d)$$ for all $t>0$. Let $$E$$ be a compact subset of $${\mathbb R}^d$$ for some $$d \ge 2$$, and suppose that the Hausdorff dimension of $$E$$ is $$>d-\alpha$$. We show that any tree graph $$T$$ on $k+1$ ($$k \ge 1$$) vertices is realizable in $$E$$, in the sense that there exist distinct $$x^1, x^2, \dots, x^{k+1} \in E$$ and $t>0$ such that the $$\phi$$-distance $$\phi(x^i, x^j)$$ is equal to $$t$$ for all pairs $(i,j)$ corresponding to the edges of the graph $$T$$. 
    more » « less
  3. Let ( R , m ) (R,\mathfrak {m}) be a Noetherian local ring of dimension d ≥<#comment/> 2 d\geq 2 . We prove that if e ( R ^<#comment/> r e d ) > 1 e(\widehat {R}_{red})>1 , then the classical Lech’s inequality can be improved uniformly for all m \mathfrak {m} -primary ideals, that is, there exists ε<#comment/> > 0 \varepsilon >0 such that e ( I ) ≤<#comment/> d ! ( e ( R ) −<#comment/> ε<#comment/> ) ℓ<#comment/> ( R / I ) e(I)\leq d!(e(R)-\varepsilon )\ell (R/I) for all m \mathfrak {m} -primary ideals I ⊆<#comment/> R I\subseteq R . This answers a question raised by Huneke, Ma, Quy, and Smirnov [Adv. Math. 372 (2020), pp. 107296, 33]. We also obtain partial results towards improvements of Lech’s inequality when we fix the number of generators of I I
    more » « less
  4. We study a class of second-order degenerate linear parabolic equations in divergence form in ( − ∞ , T ) × R + d (-\infty , T) \times {\mathbb {R}}^d_+ with homogeneous Dirichlet boundary condition on ( − ∞ , T ) × ∂ R + d (-\infty , T) \times \partial {\mathbb {R}}^d_+ , where R + d = { x ∈ R d : x d > 0 } {\mathbb {R}}^d_+ = \{x \in {\mathbb {R}}^d: x_d>0\} and T ∈ ( − ∞ , ∞ ] T\in {(-\infty , \infty ]} is given. The coefficient matrices of the equations are the product of μ ( x d ) \mu (x_d) and bounded uniformly elliptic matrices, where μ ( x d ) \mu (x_d) behaves like x d α x_d^\alpha for some given α ∈ ( 0 , 2 ) \alpha \in (0,2) , which are degenerate on the boundary { x d = 0 } \{x_d=0\} of the domain. Our main motivation comes from the analysis of degenerate viscous Hamilton-Jacobi equations. Under a partially VMO assumption on the coefficients, we obtain the well-posedness and regularity of solutions in weighted Sobolev spaces. Our results can be readily extended to systems. 
    more » « less
  5. null (Ed.)
    Abstract We consider the inequality $$f \geqslant f\star f$$ for real functions in $$L^1({\mathbb{R}}^d)$$ where $$f\star f$$ denotes the convolution of $$f$$ with itself. We show that all such functions $$f$$ are nonnegative, which is not the case for the same inequality in $L^p$ for any $$1 < p \leqslant 2$$, for which the convolution is defined. We also show that all solutions in $$L^1({\mathbb{R}}^d)$$ satisfy $$\int _{{\mathbb{R}}^{\textrm{d}}}f(x)\ \textrm{d}x \leqslant \tfrac 12$$. Moreover, if $$\int _{{\mathbb{R}}^{\textrm{d}}}f(x)\ \textrm{d}x = \tfrac 12$$, then $$f$$ must decay fairly slowly: $$\int _{{\mathbb{R}}^{\textrm{d}}}|x| f(x)\ \textrm{d}x = \infty $$, and this is sharp since for all $r< 1$, there are solutions with $$\int _{{\mathbb{R}}^{\textrm{d}}}f(x)\ \textrm{d}x = \tfrac 12$$ and $$\int _{{\mathbb{R}}^{\textrm{d}}}|x|^r f(x)\ \textrm{d}x <\infty $$. However, if $$\int _{{\mathbb{R}}^{\textrm{d}}}f(x)\ \textrm{d}x =: a < \tfrac 12$$, the decay at infinity can be much more rapid: we show that for all $$a<\tfrac 12$$, there are solutions such that for some $$\varepsilon>0$$, $$\int _{{\mathbb{R}}^{\textrm{d}}}e^{\varepsilon |x|}f(x)\ \textrm{d}x < \infty $$. 
    more » « less