- Award ID(s):
- 1703853
- NSF-PAR ID:
- 10384952
- Date Published:
- Journal Name:
- Proceedings of the ACM on Human-Computer Interaction
- Volume:
- 6
- Issue:
- CSCW2
- ISSN:
- 2573-0142
- Page Range / eLocation ID:
- 1 to 30
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)We investigate how people’s ‘humor style’ relates to their online photo-sharing behaviors and reactions to ‘privacy primes’. In an online experiment, we queried 437 participants about their humor style, likelihood to share photo-memes, and history of sharing others’ photos. In two treatment conditions, participants were either primed to imagine themselves as the photo-subjects or to consider the photo-subjects’ privacy before sharing memes. We found that participants who frequently use aggressive and self-deprecating humor were more likely to violate others’ privacy by sharing photos. We also replicated the interventions’ paradoxical effects – increasing sharing likelihood – as reported in earlier work and identified the subgroups that demonstrated this behavior through interaction analyses. When primed to consider the subjects’ privacy, only humor deniers (participants who use humor infrequently) demonstrated increased sharing. In contrast, when imagining themselves as the photo-subjects, humor deniers, unlike other participants, did not increase the sharing of photos.more » « less
-
null (Ed.)Cloud photo services are widely used for persistent, convenient, and often free photo storage, which is especially useful for mobile devices. As users store more and more photos in the cloud, significant privacy concerns arise because even a single compromise of a user's credentials give attackers unfettered access to all of the user's photos. We have created Easy Secure Photos (ESP) to enable users to protect their photos on cloud photo services such as Google Photos. ESP introduces a new client-side encryption architecture that includes a novel format-preserving image encryption algorithm, an encrypted thumbnail display mechanism, and a usable key management system. ESP encrypts image data such that the result is still a standard format image like JPEG that is compatible with cloud photo services. ESP efficiently generates and displays encrypted thumbnails for fast and easy browsing of photo galleries from trusted user devices. ESP's key management makes it simple to authorize multiple user devices to view encrypted image content via a process similar to device pairing, but using the cloud photo service as a QR code communication channel. We have implemented ESP in a popular Android photos app for use with Google Photos and demonstrate that it is easy to use and provides encryption functionality transparently to users, maintains good interactive performance and image quality while providing strong privacy guarantees, and retains the sharing and storage benefits of Google Photos without any changes to the cloud service.more » « less
-
Photo sharing has become increasingly easy with the rise of social media. Social networking sites (SNSs), such as Instagram and Facebook, are well known for their image-sharing capabilities. However, this brings the concern of photo privacy, such as who may see the images of a user who is included in a post. Photo privacy settings offer detailed and more secure ways to share a user’s photos, however, this would require SNS users to understand these settings. To better grasp users’ understanding of photo privacy settings, we conducted a structured interview with Instagram users. We found that users were aware of the majority of the privacy settings asked about and that they accurately perceived their photo privacy safety based on their knowledge of photo privacy settings.
-
We investigate the effects of perspective taking, privacy cues, and portrayal of photo subjects (i.e., photo valence) on decisions to share photos of people via social media. In an online experiment we queried 379 participants about 98 photos (that were previously rated for photo valence) in three conditions: (1) Baseline: participants judged their likelihood of sharing each photo; (2) Perspective-taking: participants judged their likelihood of sharing each photo when cued to imagine they are the person in the photo; and (3) Privacy: participants judged their likelihood to share after being cued to consider the privacy of the person in the photo. While participants across conditions indicated a lower likelihood of sharing photos that portrayed people negatively, they – surprisingly – reported a higher likelihood of sharing photos when primed to consider the privacy of the person in the photo. Frequent photo sharers on real-world social media platforms and people without strong personal privacy preferences were especially likely to want to share photos in the experiment, regardless of how the photo portrayed the subject. A follow-up study with 100 participants explaining their responses revealed that the Privacy condition led to a lack of concern with others’ privacy. These findings suggest that developing interventions for reducing photo sharing and protecting the privacy of others is a multivariate problem in which seemingly obvious solutions can sometimes go awry.more » « less
-
In recent years, Online Social Networks (OSN) have become popular content-sharing environments. With the emergence of smartphones with high-quality cameras, people like to share photos of their life moments on OSNs. The photos, however, often contain private information that people do not intend to share with others (e.g., their sensitive relationship). Solely relying on OSN users to manually process photos to protect their relationship can be tedious and error-prone. Therefore, we designed a system to automatically discover sensitive relations in a photo to be shared online and preserve the relations by face blocking techniques. We first used the Decision Tree model to learn sensitive relations from the photos labeled private or public by OSN users. Then we defined a face blocking problem and developed a linear programming model to optimize the tradeoff between preserving relationship privacy and maintaining the photo utility. In this paper, we generated synthetic data and used it to evaluate our system performance in terms of privacy protection and photo utility loss.more » « less