skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Abalone populations are most sensitive to environmental stress effects on adult individuals
Marine organisms are exposed to stressors associated with climate change throughout their life cycle, but a majority of studies focus on responses in single life stages, typically early ones. Here, we examined how negative impacts from stressors associated with climate change, ocean acidification, and pollution can act across multiple life stages to influence long-term population dynamics and decrease resilience to mass mortality events. We used a continuous-size-structured density-dependent model for abalone ( Haliotis spp.), calcifying mollusks that support valuable fisheries, to explore the sensitivity of stock abundance and annual catch to potential changes in growth, survival, and fecundity across the organism’s lifespan. Our model predicts that decreased recruitment from lowered fertilization success or larval survival has small negative impacts on the population, and that stock size and fishery performance are much more sensitive to changes in parameters that affect the size or survival of adults. Sensitivity to impacts on subadults and juveniles is also important for the population, though less so than for adults. Importantly, likelihood of recovery following mortality events showed more pronounced sensitivity to most possible parameter impacts, greater than the effects on equilibrium density or catch. Our results suggest that future experiments on environmental stressors should focus on multiple life stages to capture effects on population structure and dynamics, particularly for species with size-dependent fecundity.  more » « less
Award ID(s):
1736830
PAR ID:
10298204
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Marine Ecology Progress Series
Volume:
643
ISSN:
0171-8630
Page Range / eLocation ID:
75 to 85
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Synopsis Climate resilience, a focus of many recent studies, has been examined from ecological, physiological, and evolutionary perspectives. However, sampling biases toward adults, males, and certain species have made establishing the link between environmental change and population-level change problematic. Here, we used data from four laboratory studies, in which we administered pre- and postnatal stressors, such as suboptimal incubation temperature, heat stress, and food restriction, to zebra finches. We then quantified hatching success, posthatch survival, and reproductive success, to parameterize age-structured population dynamics models with the goal of estimating the effect of the stressors on relative population growth rates. Using the same model structure, we tested the hypothesis that early life stages influence population growth rate more than later life stages. Our models suggested that stressful events during embryonic development, such as suboptimal incubation temperatures and reduced gas exchange for the embryos, have a greater total impact on population growth than posthatch stressors, such as heat stress and food restriction. However, among life history traits, differences in hatching success and sex ratio of offspring in response to stressors changed population growth rates more than differences in any other demographic rate estimates. These results suggest that when predicting population resilience against climate change, it is critical to account for effects of climate change on all life stages, including early stages of life, and to incorporate individuals’ physiology and stress tolerance that likely influence future stress responses, reproduction, and survival. 
    more » « less
  2. Anticipating the next generation of forests requires understanding of recruitment responses to habitat change. Tree distribution and abundance depend not only on climate, but also on habitat variables, such as soils and drainage, and on competition beneath a shaded canopy. Recent analyses show that North American tree species are migrating in response to climate change, which is exposing each population to novel climate-habitat interactions (CHI). Because CHI have not been estimated for either adult trees or regeneration (recruits per year per adult basal area), we cannot evaluate migration potential into the future. Using the Masting Inference and Forecasting (MASTIF) network of tree fecundity and new continent-wide observations of tree recruitment, we quantify impacts for redistribution across life stages from adults to fecundity to recruitment. We jointly modeled response of adult abundance and recruitment rate to climate/habitat conditions, combined with fecundity sensitivity, to evaluate if shifting CHI explain community reorganization. To compare climate effects with tree fecundity, which is estimated from trees and thus is "conditional" on tree presence, we demonstrate how to quantify this conditional status for regeneration. We found that fecundity was regulated by temperature to a greater degree than other stages, yet exhibited limited responses to moisture deficit. Recruitment rate expressed strong sensitivities to CHI, more like adults than fecundity, but still with substantial differences. Communities reorganized from adults to fecundity, but there was a re-coalescence of groups as seedling recruitment partially reverted to community structure similar to that of adults. Results provide the first estimates of continent-wide community sensitivity and their implications for reorganization across three life-history stages under climate change. 
    more » « less
  3. Abstract Harvest of wild organisms is an important component of human culture, economy, and recreation, but can also put species at risk of extinction. Decisions that guide successful management actions therefore rely on the ability of researchers to link changes in demographic processes to the anthropogenic actions or environmental changes that underlie variation in demographic parameters.Ecologists often use population models or maximum sustained yield curves to estimate the impacts of harvest on wildlife and fish populations. Applications of these models usually focus exclusively on the impact of harvest and often fail to consider adequately other potential, often collinear, mechanistic drivers of the observed relationships between harvest and demographic rates. In this study, we used an integrated population model and long‐term data (1973–2016) to examine the relationships among hunting and natural mortality, the number of hunters, habitat conditions, and population size of blue‐winged tealSpatula discors, an abundant North American dabbling duck with a relatively fast‐paced life history strategy.Over the last two and a half decades of the study, teal abundance tripled, hunting mortality probability increased slightly (), and natural mortality probability increased substantially () at greater population densities. We demonstrate strong density‐dependent effects on natural mortality and fecundity as population density increased, indicative of compensatory harvest mortality and compensatory natality. Critically, an analysis that only assessed the relationship between survival and hunting mortality would spuriously indicate depensatory mortality due to multicollinearity between abundance, natural mortality and hunting mortality.Our findings demonstrate that models that only consider the direct effect of hunting on survival or natural mortality can fail to accurately assess the mechanistic impact of hunting on population dynamics due to multicollinearity among demographic drivers. This multicollinearity limits inference and may have strong impacts on applied management actions globally. 
    more » « less
  4. How climate change influences the dynamics of plant populations is not well understood, as few plant studies have measured responses of vital rates to climatic variables and modeled the impact on population growth. The present study used 25 y of demographic data to analyze how survival, growth, and fecundity respond to date of spring snowmelt for a subalpine plant. Fecundity was estimated by seed production (over 15 y) and also divided into flower number, fruit set, seeds per fruit, and escape from seed predation. Despite no apparent effects on flower number, plants produced more seeds in years with later snowmelt. Survival and probability of flowering were reduced by early snowmelt in the previous year. Based on demographic models, earlier snowmelt with warming is expected to lead to negative population growth, driven especially by changes in seedling establishment and seed production. These results provide a rare example of how climate change is expected to influence the dynamics of a plant population. They furthermore illustrate the potential for strong population impacts even in the absence of more commonly reported visual signs, such as earlier blooming or reduced floral display in early melting years. 
    more » « less
  5. ABSTRACT Animals at early life stages are generally more sensitive to environmental stress than adults. This is especially true of oviparous vertebrates that develop in variable environments with little or no parental care. These organisms regularly experience environmental fluctuations as part of their natural development, but climate change is increasing the frequency and intensity of these events. The developmental plasticity of oviparous vertebrates will therefore play a critical role in determining their future fitness and survival. In this Review, we discuss and compare the phenotypic consequences of chronic developmental hypoxia on the cardiovascular system of oviparous vertebrates. In particular, we focus on species-specific responses, critical windows, thresholds for responses and the interactive effects of other stressors, such as temperature and hypercapnia. Although important progress has been made, our Review identifies knowledge gaps that need to be addressed if we are to fully understand the impact of climate change on the developmental plasticity of the oviparous vertebrate cardiovascular system. 
    more » « less