Reducing our reliance on carbon-intensive energy sources is vital for reducing the carbon footprint of the electric grid. Although the grid is seeing increasing deployments of clean, renewable sources of energy, a significant portion of the grid demand is still met using traditional carbon-intensive energy sources. In this paper, we study the problem of using energy storage deployed in the grid to reduce the grid's carbon emissions. While energy storage has previously been used for grid optimizations such as peak shaving and smoothing intermittent sources, our insight is to use distributed storage to enable utilities to reduce their reliance on their less efficient and most carbon-intensive power plants and thereby reduce their overall emission footprint. We formulate the problem of emission-aware scheduling of distributed energy storage as an optimization problem, and use a robust optimization approach that is well-suited for handling the uncertainty in load predictions, especially in the presence of intermittent renewables such as solar and wind. We evaluate our approach using a state of the art neural network load forecasting technique and real load traces from a distribution grid with 1,341 homes. Our results show a reduction of >0.5 million kg in annual carbon emissions --- equivalent to a drop of 23.3% in our electric grid emissions.
more »
« less
Peak Forecasting for Battery-based Energy Optimizations in Campus Microgrids
Battery-based energy storage has emerged as an enabling technology for a variety of grid energy optimizations, such as peak shaving and cost arbitrage. A key component of battery-driven peak shaving optimizations is peak forecasting, which predicts the hours of the day that see the greatest demand. While there has been significant prior work on load forecasting, we argue that the problem of predicting periods where the demand peaks for individual consumers or micro-grids is more challenging than forecasting load at a grid scale. We propose a new model for peak forecasting, based on deep learning, that predicts the k hours of each day with the highest and lowest demand. We evaluate our approach using a two year trace from a real micro-grid of 156 buildings and show that it outperforms the state of the art load forecasting techniques adapted for peak predictions by 11-32%. When used for battery-based peak shaving, our model yields annual savings of $496,320 for a 4 MWhr battery for this micro-grid.
more »
« less
- Award ID(s):
- 1645952
- PAR ID:
- 10298245
- Date Published:
- Journal Name:
- The Eleventh ACM International Conference on Future Energy Systems (e-Energy)
- Page Range / eLocation ID:
- 237 to 241
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The increasing adoption of electric vehicles (EVs) by the general population creates an opportunity to deploy the energy storage capability of EVs for performing peak energy shaving in their households and ultimately in their neighborhood grid during surging demand. However, the impact of the adoption rate in a neighborhood might be counterbalanced by the energy demand of EVs during off-peak hours. Therefore, achieving optimal peak energy shaving is a product of a sensitive balancing process that depends on the EV adoption rate. In this paper, we propose EOS, an agent-based simulation model, to represent independent household energy usage and estimate the real-time neighborhood energy consumption and peak shaving energy amount of a neighborhood. This study uses Residential Energy Consumption Survey (RECS) and the American Time Use Survey (ATUS) data to model realistic real-time household energy use. We evaluate the impact of the EV adoption rates of a neighborhood on performing energy peak shaving during sudden energy surges. Our findings reveal these trade-offs and, specifically, a reduction of up to 30% of the peak neighborhood energy usage for the optimal neighborhood EV adoption rate in a 1089 household neighborhood.more » « less
-
Abstract Accurately forecasting electric vehicle (EV) charging demand is critical for managing peak loads and ensuring grid stability in regions with increasing EV adoption. Residential household peak energy usage and EV charging patterns vary significantly across areas, influenced by geographic accessibility, sociodemographic factors, charging preferences, and EV attributes. Averaging data across regions can overlook these differences, leading to an underestimation of charging demand disparities and risking grid overload during peak periods. This study introduces a spatiotemporal trip chain-based EV charging schedule simulation method to address these challenges. The methodology integrates sociodemographic and geographic data with the large language model to generate trip chains, which serve as the basis for simulating EV charging schedules and aggregating regional energy loads to forecast peak demand. A case study of Pescadero, CA employs synthetic profiles, derived from Census statistics, to model local households as EV owners and validate the practical applicability of this approach. The results emphasize the representativeness of the trip chain generation model and the effectiveness of the EV charging schedule simulation model in accurately forecasting energy consumption patterns and assessing peak load impacts. By combining sociodemographic and geographic insights, this study provides a robust tool for evaluating the peak load impacts of EV charging.more » « less
-
This paper makes use of electric vehicles (EVs) that are simultaneously connected to the Photovoltaic Cells (PV) and the power grid. In micro-grids, batteries of the electric vehicles (EVs) used as a source of power to feed the power grid in the peak demands of electricity. EVs can help regulation of the power grid by storing excess solar energy and returning it to the grid during high demand hours. This paper proposes a new architecture of micro-grids by using a rooftop solar system, Battery Electric Vehicles (BEVs), grid connected inverters, a boost converter, a bidirectional half-bridge converter, output filter, including L, LC, or LCL, and transformers. The main parts of this micro-grid are illustrated and modeled, as well as a simulation of their operation. In addition, simulation results explore the charging and discharging scenarios of the BEVs.more » « less
-
The ever-increasing demand for energy is resulting in considerable carbon emissions from the electricity grid. In recent years, there has been growing attention on demand-side optimizations to reduce carbon emissions from electricity usage. A vital component of these optimizations is short-term forecasting of the carbon intensity of the grid-supplied electricity. Many recent forecasting techniques focus on day-ahead forecasts, but obtaining such forecasts for longer periods, such as multiple days, while useful, has not gotten much attention. In this paper, we present CarbonCast, a machine-learning-based hierarchical approach that provides multi-day forecasts of the grid's carbon intensity. CarbonCast uses neural networks to first generate production forecasts for all the electricity-generating sources. It then uses a hybrid CNN-LSTM approach to combine these first-tier forecasts with historical carbon intensity data and weather forecasts to generate a carbon intensity forecast for up to four days. Our results show that such a hierarchical design improves the robustness of the predictions against the uncertainty associated with a longer multi-day forecasting period. We analyze which factors most influence the carbon intensity forecasts of any region with a specific mixture of electricity-generating sources and also show that accurate source production forecasts are vital in obtaining precise carbon intensity forecasts. CarbonCast's 4-day forecasts have a MAPE of 3.42--19.95% across 13 geographically distributed regions while outperforming state-of-the-art methods. Importantly, CarbonCast is the first open-sourced tool for multi-day carbon intensity forecasts where the code and data are freely available to the research community.more » « less
An official website of the United States government

