skip to main content

Search for: All records

Award ID contains: 1645952

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Residential solar installations are becoming increasingly popular among homeowners. However, renters and homeowners living in shared buildings cannot go solar as they do not own the shared spaces. Community-owned solar arrays and energy storage have emerged as a solution, which enables ownership even when they do not own the property or roof. However, such community-owned systems do not allow individuals to control their share for optimizing a home’s electricity bill. To overcome this limitation, inspired by the concept of virtualization in operating systems, we propose virtual community-owned solar and storage—a logical abstraction to allow individuals to independently control theirmore »share of the system. We argue that such individual control can benefit all owners and reduce their reliance on grid power. We present mechanisms and algorithms to provide a virtual solar and battery abstraction to users and understand their cost benefits. In doing so, our comparison with a traditional community-owned system shows that our AutoShare approach can achieve the same global savings of 43% while providing independent control of the virtual system. Further, we show that independent energy sharing through virtualization provides an additional 8% increase in savings to individual owners.

    « less
  2. There has been significant growth in both utility-scale and residential-scale solar installations in recent years, driven by rapid technology improvements and falling prices. Unlike utility-scale solar farms that are professionally managed and maintained, smaller residential-scale installations often lack sensing and instrumentation for performance monitoring and fault detection. As a result, faults may go undetected for long periods of time, resulting in generation and revenue losses for the homeowner. In this article, we present SunDown, a sensorless approach designed to detect per-panel faults in residential solar arrays. SunDown does not require any new sensors for its fault detection and instead usesmore »a model-driven approach that leverages correlations between the power produced by adjacent panels to detect deviations from expected behavior. SunDown can handle concurrent faults in multiple panels and perform anomaly classification to determine probable causes. Using two years of solar generation data from a real home and a manually generated dataset of multiple solar faults, we show that SunDown has a Mean Absolute Percentage Error of 2.98% when predicting per-panel output. Our results show that SunDown is able to detect and classify faults, including from snow cover, leaves and debris, and electrical failures with 99.13% accuracy, and can detect multiple concurrent faults with 97.2% accuracy.« less
    Free, publicly-accessible full text available October 31, 2022
  3. While ride-sharing has emerged as a popular form of transportation in urban areas due to its on-demand convenience, it has become a major contributor to carbon emissions, with recent studies suggesting it is 47% more carbon-intensive than personal car trips. In this paper, we examine the feasibility, costs, and carbon benefits of using electric bike-sharing---a low carbon form of ride-sharing---as a potential substitute for shorter ride-sharing trips, with the overall goal of greening the ride-sharing ecosystem. Using public datasets from New York City, our analysis shows that nearly half of the taxi and rideshare trips in New York are shortsmore »trips of less than 3.5km, and that biking is actually faster than using a car for ultra-short trips of 2km or less. We analyze the cost and carbon benefits of different levels of ride substitution under various scenarios. We find that the additional bikes required to satisfy increased demand from ride substitution increases sub-linearly and results in 6.6% carbon emission reduction for 10% taxi ride substitution. Moreover, this reduction can be achieved through a hybrid mix that requires only a quarter of the bikes to be electric bikes, which reduces system costs. We also find that expanding bike-share systems to new areas that lack bike-share coverage requires additional investments due to the need for new bike stations and bike capacity to satisfy demand but also provides substantial carbon emission reductions. Finally, frequent station repositioning can reduce the number of bikes needed in the system by up to a third for a minimal increase in carbon emissions of 2% from the trucks required to perform repositioning, providing an interesting tradeoff between capital costs and carbon emissions.« less
  4. Buildings consume over 40% of the total energy in modern societies, and improving their energy efficiency can significantly reduce our energy footprint. In this article, we present WattScale, a data-driven approach to identify the least energy-efficient buildings from a large population of buildings in a city or a region. Unlike previous methods such as least-squares that use point estimates, WattScale uses Bayesian inference to capture the stochasticity in the daily energy usage by estimating the distribution of parameters that affect a building. Further, it compares them with similar homes in a given population. WattScale also incorporates a fault detection algorithmmore »to identify the underlying causes of energy inefficiency. We validate our approach using ground truth data from different geographical locations, which showcases its applicability in various settings. WattScale has two execution modes—(i) individual and (ii) region-based, which we highlight using two case studies. For the individual execution mode, we present results from a city containing >10,000 buildings and show that more than half of the buildings are inefficient in one way or another indicating a significant potential from energy improvement measures. Additionally, we provide probable cause of inefficiency and find that 41%, 23.73%, and 0.51% homes have poor building envelope, heating, and cooling system faults, respectively. For the region-based execution mode, we show that WattScale can be extended to millions of homes in the U.S. due to the recent availability of representative energy datasets.« less
  5. Developing accurate solar performance models, which infer solar output from widely available external data sources, is increasingly important as the grid's solar capacity rises. These models are important for a wide range of solar analytics, including solar forecasting, resource estimation, and fault detection. The most significant error in existing models is inaccurate estimates of clouds' effect on solar output, as cloud formations and their impact on solar radiation are highly complex. In 2018 and 2019, respectively, the National Oceanic and Atmospheric Administration (NOAA) in the U.S. began releasing multispectral data comprising 16 different light wavelengths (or channels) from the GOES-16more »and GOES-17 satellites every 5 minutes. Enough channel data is now available to learn solar performance models using machine learning (ML). In this paper, we show how to develop both local and global solar performance models using ML on multispectral data, and compare their accuracy to existing physical models based on ground-level weather readings and on NOAA's estimates of downward shortwave radiation (DSR), which also derive from multispectral data but using a physical model. We show that ML-based solar performance models based on multispectral data are much more accurate than weather- or DSR-based models, improving the average MAPE across 29 solar sites by over 50% for local models and 25% for global models.« less
  6. The falling cost of solar energy deployments has resulted in ever-increasing growth in solar capacity worldwide. The primary challenge posed by increasing grid-tied solar capacity is handling its variability due to continuously changing conditions. Thus, prior work has developed highly sophisticated models to estimate and forecast solar power output based on many characteristics, including location, elevation, time, weather, shading, module type, wiring, etc. These models are highly accurate for estimating solar power, especially over long periods, for sites at low latitudes, i.e., closer to the equator. However, models for sites at higher latitudes are less accurate due to the effectmore »of snow on solar output, since even a small amount of snow can cover panels and reduce power to zero. Improving the accuracy of these models for annual solar output by even 2--3% is significant, as power translates directly into revenue, which compounds over the system's lifetime. Thus, if a site produces 2--3% less power on average per year due to snow than a model predicts, it can mean the difference between a positive or negative return-on-investment. To address the problem, we develop DeepSnow, a data-driven approach that models the effect of snow on solar power generation. DeepSnow integrates with existing solar modeling frameworks, and uses publicly available snow data to learn its effect on solar generation. We leverage deep learning to quantify the effect of different snow variables on solar power using 4 million hourly readings from 40 solar sites. We evaluate our approach on 10 solar sites, and show that it yields a higher accuracy than the current approach for modeling snow effects used by the U.S. Department of Energy's System Advisor Model (SAM), a popular solar modeling framework.« less
  7. Electric bikes have emerged as a popular form of transportation for short trips in dense urban areas and are being increasingly adopted by bike share programs for easy accessibility to riders. Motivated by the rising popularity of electric bikes, a form of an electric vehicle, we study the research question of how to design a zero-carbon electric bike share system. Specifically we study the challenges in designing solar charging stations for electric bike systems that enable either net-zero or a fully zero-carbon operation. We design a prototype two bike solar charging station to demonstrate the feasibility of our approach. Usingmore »insights and data from our prototype solar charging station, we then conduct a data driven analysis of the costs and benefits of converting an entire bike system into one powered using solar charging stations. Using empirical analysis, we determine the panel and battery capacity for each station, and perform a feasibility evaluation of the system using 8 months of ridership data. Our results show that equipping each bike station with a single grid-tied solar panel is adequate to meet the annual charging demand from electric bikes and achieve net-zero operation using net-metering. For an off-grid setup, our analysis shows that a bike station needs twice as many solar panels, on average, along with a 1.8kWh battery, with the busiest bike station needing 6× more solar capacity than in the net-metering case. Our analysis also reveals a tradeoff between the array size and the battery size needed to achieve true-zero carbon operation for the electric bike share system.« less
  8. Developing accurate solar performance models, which infer solar power output in real time based on the current environmental conditions, are an important prerequisite for many advanced energy analytics. Recent work has developed sophisticated data-driven techniques that generate customized models for complex rooftop solar sites by combining well-known physical models with both system and public weather station data. However, inferring solar generation from public weather station data has two drawbacks: not all solar sites are near a public weather station, and public weather data generally quantifies cloud cover-the most significant weather metric that affects solar-using highly coarse and imprecise measurements.In thismore »paper, we develop and evaluate solar performance models that use satellite-based estimates of downward shortwave (solar) radiation (DSR) at the Earth's surface, which NOAA began publicly releasing after the launch of the GOES-R geostationary satellites in 2017. Unlike public weather data, DSR estimates are available for every 0.5km 2 area. As we show, the accuracy of solar performance modeling using satellite data and public weather station data depends on the cloud conditions, with DSR-based modeling being more accurate under clear skies and station-based modeling being more accurate under overcast skies. Surprisingly, our results show that, overall, pure satellite-based modeling yields similar accuracy as pure station-based modeling, although the relationship is a function of conditions and the local climate. We also show that a hybrid approach that combines the best of both approaches can also modestly improve accuracy.« less