skip to main content

Title: The Flip Side of the Reweighted Coin: Duality of Adaptive Dropout and Regularization
Among the most successful methods for sparsifying deep (neural) networks are those that adaptively mask the network weights throughout training. By examining this masking, or dropout, in the linear case, we uncover a duality between such adaptive methods and regularization through the so-called "η-trick" that casts both as iteratively reweighted optimizations. We show that any dropout strategy that adapts to the weights in a monotonic way corresponds to an effective subquadratic regularization penalty, and therefore leads to sparse solutions. We obtain the effective penalties for several popular sparsification strategies, which are remarkably similar to classical penalties commonly used in sparse optimization. Considering variational dropout as a case study, we demonstrate similar empirical behavior between the adaptive dropout method and classical methods on the task of deep network sparsification, validating our theory.
Authors:
; ;
Award ID(s):
1911094 1838177 1730574
Publication Date:
NSF-PAR ID:
10298310
Journal Name:
Advances in neural information processing systems
ISSN:
1049-5258
Sponsoring Org:
National Science Foundation
More Like this
  1. Sparsification of neural networks is one of the effective complexity reduction methods to improve efficiency and generalizability. Binarized activation offers an additional computational saving for inference. Due to vanishing gradient issue in training networks with binarized activation, coarse gradient (a.k.a. straight through estimator) is adopted in practice. In this paper, we study the problem of coarse gradient descent (CGD) learning of a one hidden layer convolutional neural network (CNN) with binarized activation function and sparse weights. It is known that when the input data is Gaussian distributed, no-overlap one hidden layer CNN with ReLU activation and general weight can be learned by GD in polynomial time at high probability in regression problems with ground truth. We propose a relaxed variable splitting method integrating thresholding and coarse gradient descent. The sparsity in network weight is realized through thresholding during the CGD training process. We prove that under thresholding of L1, L0, and transformed-L1 penalties, no-overlap binary activation CNN can be learned with high probability, and the iterative weights converge to a global limit which is a transformation of the true weight under a novel sparsifying operation. We found explicit error estimates of sparse weights from the true weights.
  2. Sparsification of neural networks is one of the effective complexity reduction methods to improve efficiency and generalizability. We consider the problem of learning a one hidden layer convolutional neural network with ReLU activation function via gradient descent under sparsity promoting penalties. It is known that when the input data is Gaussian distributed, no-overlap networks (without penalties) in regression problems with ground truth can be learned in polynomial time at high probability. We propose a relaxed variable splitting method integrating thresholding and gradient descent to overcome the non-smoothness in the loss function. The sparsity in network weight is realized during the optimization (training) process. We prove that under L1, L0, and transformed-L1 penalties, no-overlap networks can be learned with high probability, and the iterative weights converge to a global limit which is a transformation of the true weight under a novel thresholding operation. Numerical experiments confirm theoretical findings, and compare the accuracy and sparsity trade-off among the penalties.
  3. Convolutional neural networks (CNN) have been hugely successful recently with superior accuracy and performance in various imaging applications, such as classification, object detection, and segmentation. However, a highly accurate CNN model requires millions of parameters to be trained and utilized. Even to increase its performance slightly would require significantly more parameters due to adding more layers and/or increasing the number of filters per layer. Apparently, many of these weight parameters turn out to be redundant and extraneous, so the original, dense model can be replaced by its compressed version attained by imposing inter- and intra-group sparsity onto the layer weights during training. In this paper, we propose a nonconvex family of sparse group lasso that blends nonconvex regularization (e.g., transformed L1, L1 - L2, and L0) that induces sparsity onto the individual weights and L2,1 regularization onto the output channels of a layer. We apply variable splitting onto the proposed regularization to develop an algorithm that consists of two steps per iteration: gradient descent and thresholding. Numerical experiments are demonstrated on various CNN architectures showcasing the effectiveness of the nonconvex family of sparse group lasso in network sparsification and test accuracy on par with the current state of the art.
  4. Tabacu, Lucia (Ed.)
    Convolutional neural networks (CNN) have been hugely successful recently with superior accuracy and performance in various imaging applications, such as classification, object detection, and segmentation. However, a highly accurate CNN model requires millions of parameters to be trained and utilized. Even to increase its performance slightly would require significantly more parameters due to adding more layers and/or increasing the number of filters per layer. Apparently, many of these weight parameters turn out to be redundant and extraneous, so the original, dense model can be replaced by its compressed version attained by imposing inter- and intra-group sparsity onto the layer weights during training. In this paper, we propose a nonconvex family of sparse group lasso that blends nonconvex regularization (e.g., transformed ℓ1, ℓ1 − ℓ2, and ℓ0) that induces sparsity onto the individual weights and ℓ2,1 regularization onto the output channels of a layer. We apply variable splitting onto the proposed regularization to develop an algorithm that consists of two steps per iteration: gradient descent and thresholding. Numerical experiments are demonstrated on various CNN architectures showcasing the effectiveness of the nonconvex family of sparse group lasso in network sparsification and test accuracy on par with the current state of the art.
  5. Learned optimization algorithms are promising approaches to inverse problems by leveraging advanced numerical optimization schemes and deep neural network techniques in machine learning. In this paper, we propose a novel deep neural network architecture imitating an extra proximal gradient algorithm to solve a general class of inverse problems with a focus on applications in image reconstruction. The proposed network features learned regularization that incorporates adaptive sparsification mappings, robust shrinkage selections, and nonlocal operators to improve solution quality. Numerical results demonstrate the improved efficiency and accuracy of the proposed network over several state-of-the-art methods on a variety of test problems.