skip to main content

Title: Is the age of plant communities predicted by the age, stability and soil composition of the underlying landscapes? An investigation of OCBILs
Abstract Old, climatically buffered, infertile landscapes (OCBILs) have been hypothesized to harbour an elevated number of persistent plant lineages and are predicted to occur across different parts of the globe, interspersed with other types of landscapes. We tested whether the mean age of a plant community is associated with occurrence on OCBILs, as predicted by climatic stability and poor soil environments. Using digitized occurrence data for seed plants occurring in Australia (7033 species), sub-Saharan Africa (3990 species) and South America (44 482 species), regions that comprise commonly investigated OCBILs (Southwestern Australian Floristic Region, Greater Cape Floristic Region and campos rupestres), and phylogenies pruned to match the species occurrences, we tested for associations between environmental data (current climate, soil composition, elevation and climatic stability) and two novel metrics developed here that capture the age of a community (mean tip length and mean node height). Our results indicate that plant community ages are influenced by a combination of multiple environmental predictors that vary globally; we did not find statistically strong associations between the environments of OCBIL areas and community age, in contrast to the prediction for these landscapes. The Cape Floristic Region was the only OCBIL that showed a significant, although not more » strong, overlap with old communities. « less
Authors:
; ; ; ; ; ;
Award ID(s):
1930005
Publication Date:
NSF-PAR ID:
10298394
Journal Name:
Biological Journal of the Linnean Society
Volume:
133
Issue:
2
Page Range or eLocation-ID:
297 to 316
ISSN:
0024-4066
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Temporal variation is a powerful source of selection on life history strategies and functional traits in natural populations. Theory predicts that the rate and predictability of fluctuations should favor distinct strategies, ranging from phenotypic plasticity to bet-hedging, which are likely to have important consequences for species distribution patterns and their responses to environmental change. To date, we have few empirical studies that test those predictions in natural systems, and little is known about how genetic, environmental, and developmental factors interact to define the “fluctuation niche” of species in temporally variable environments. In this study, we evaluated the effects of hydrological variability on fitness and functional trait variation in three closely related plant species in the genus Lasthenia that occupy different microhabitats within vernal pool landscapes. Using a controlled greenhouse experiment, we manipulated the mean and variability in hydrological conditions by growing plants at different depths with respect to a shared water table and manipulating the magnitude of stochastic fluctuations in the water table over time. We found that all species had similarly high relative fitness above the water table, but differed in their sensitivities to water table fluctuations. Specifically, the two species from vernal pools basins, where soil moisturemore »is controlled by a perched water table, were negatively affected by the stochasticity treatments. In contrast, a species from the upland habitat surrounding vernal pools, where stochastic precipitation events control soil moisture variation, was insensitive to experimental fluctuations in the water table. We found strong signatures of genetic, environmental (plastic), and developmental variation in four traits that can influence plant hydrological responses. Three of these traits varied across plant development and among experimental treatments in directions that aligned with constitutive differences among species, suggesting that multiple sources of variation align to facilitate phenotypic matching with the hydrological environment in Lasthenia. We found little evidence for predicted patterns of phenotypic plasticity and bet-hedging in species and traits from predictable and stochastic environments, respectively. We propose that selection for developmental shifts in the hydrological traits of Lasthenia species has reduced or modified selection for plasticity at any given stage of development. Collectively, these results suggest that variation in species’ sensitivities to hydrological stochasticity may explain why vernal pool Lasthenia species do not occur in upland habitat, and that all three species integrate genetic, environmental, and developmental information to manage the unique patterns of temporal hydrological variation in their respective microhabitats.

    « less
  2. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>
  3. The complex relationship between ecosystem function and soil food web structure is governed by species interactions, many of which remain unmapped. Phagotrophic protists structure soil food webs by grazing the microbiome, yet their involvement in intraguild competition, susceptibility to predator diversity, and grazing preferences are only vaguely known. These species-dependent interactions are contextualized by adjacent biotic and abiotic processes, and thus obfuscated by typically high soil biodiversity. Such questions may be investigated in the McMurdo Dry Valleys (MDV) of Antarctica because the physical environment strongly filters biodiversity and simplifies the influence of abiotic factors. To detect the potential interactions in the MDV, we analyzed the co-occurrence among shotgun metagenome sequences for associations suggestive of intraguild competition, predation, and preferential grazing. In order to control for confounding abiotic drivers, we tested co-occurrence patterns against various climatic and edaphic factors. Non-random co-occurrence between phagotrophic protists and other soil fauna was biotically driven, but we found no support for competition or predation. However, protists predominately associated with Proteobacteria and avoided Actinobacteria, suggesting grazing preferences were modulated by bacterial cell-wall structure and growth rate. Our study provides a critical starting-point for mapping protist interactions in native soils and highlights key trends for future targetedmore »molecular and culture-based approaches.« less
  4. Do hotspots of plant biodiversity translate into hotspots in the abundance and diversity of large mammalian herbivores? A common expectation in community ecology is that the diversity of plants and animals should be positively correlated in space, as with the latitudinal diversity gradient and the geographic mosaic of biodiversity. Whether this pattern ‘scales down’ to landscape-level linkages between the diversity of plants or the activities of highly mobile megafauna has received less attention. We investigated spatial associations between plants and large herbivores by integrating data from a plant-DNA-barcode phylogeny, camera traps, and a comprehensive map of woody plants across the 1.2-km2 Mpala Forest Global Earth Observatory (ForestGEO) plot, Kenya. Plant and large herbivore communities were strongly associated with an underlying soil gradient, but the richness of large herbivore species was negatively correlated with the richness of woody plants. Results suggest thickets and steep terrain create associational refuges for plants by deterring megaherbivores from browsing on otherwise palatable species. Recent work using dietary DNA metabarcoding has demonstrated that large herbivores often directly control populations of the plant species they prefer to eat, and our results reinforce the important role of megaherbivores in shaping vegetation across landscapes.
  5. Loranthaceae are parasitic plants in about 76 genera that are predominantly found in subtropical and temperate regions of the Southern Hemisphere as branch parasites. Australia is an area of high diversity with about 11 genera and 65 species, most of which are endemic. Loranthaceae branch parasites are also morphologically diverse having both radial and zygomorphic flowers that are typically bird pollinated and each of the four basic haustorial types. Haustorial types include epicortical roots (ERs) that grow along the host branch surface and at intervals form secondary attachments to their host, clasping unions where parasite tissue enlarges partially encircling the host branch, wood roses where host tissue proliferates forming a placenta where the parasite is attached, and bark strands that spread within the outer tissues of the host branch. We hypothesized that those haustoria where parasitic tissue proliferated, such as ERs and clasping unions, would occupy more mesic environments. To test this hypothesis and investigate other relationships among ecological parameters and haustorial form we used 17,753 sets of occurrence and ecological data from the Atlas of Living Australia (ALA) online repository for 42 species of Loranthaceae. We analyzed haustorial forms through comparative studies of haustoria housed at the UC Herbarium,more »relevant literature, and collections in public repositories. Biogeographical and environmental data were analyzed using mapping and statistical methods in the R environment. Our preliminary research suggests that bark strands are found in climatic regions across Australia, including deserts, while both epicortical roots (ERs) and clasping unions are mostly restricted to mesic coastlines of eastern Australia (21 of 22 species with ERs occur only along eastern coastlines of Australia or in the Cape York Peninsula). Wood roses are less common in Australia with few data points. Haustoria are sometimes complex, especially clasping unions where bark strands are occasionally also produced. An interesting finding was that Amyema sanguinea has a wide distribution in arid as well as mesic climates even though it has ERs. This species has unusually robust ERs that might contribute to its wider ecological niche. Evolution of haustoria in Australia is discussed based on phylogenetic hypotheses of Loranthaceae genera.« less