skip to main content


Search for: All records

Award ID contains: 1930030

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Eaton, Deren (Ed.)
    Abstract Applications of molecular phylogenetic approaches have uncovered evidence of hybridization across numerous clades of life, yet the environmental factors responsible for driving opportunities for hybridization remain obscure. Verbal models implicating geographic range shifts that brought species together during the Pleistocene have often been invoked, but quantitative tests using paleoclimatic data are needed to validate these models. Here, we produce a phylogeny for Heuchereae, a clade of 15 genera and 83 species in Saxifragaceae, with complete sampling of recognized species, using 277 nuclear loci and nearly complete chloroplast genomes. We then employ an improved framework with a coalescent simulation approach to test and confirm previous hybridization hypotheses and identify one new intergeneric hybridization event. Focusing on the North American distribution of Heuchereae, we introduce and implement a newly developed approach to reconstruct potential past distributions for ancestral lineages across all species in the clade and across a paleoclimatic record extending from the late Pliocene. Time calibration based on both nuclear and chloroplast trees recovers a mid- to late-Pleistocene date for most inferred hybridization events, a timeframe concomitant with repeated geographic range restriction into overlapping refugia. Our results indicate an important role for past episodes of climate change, and the contrasting responses of species with differing ecological strategies, in generating novel patterns of range contact among plant communities and therefore new opportunities for hybridization. The new ancestral niche method flexibly models the shape of niche while incorporating diverse sources of uncertainty and will be an important addition to the current comparative methods toolkit. [Ancestral niche reconstruction; hybridization; paleoclimate; pleistocene.] 
    more » « less
    Free, publicly-accessible full text available April 19, 2024
  2. null (Ed.)
  3. null (Ed.)
    Abstract Old, climatically buffered, infertile landscapes (OCBILs) have been hypothesized to harbour an elevated number of persistent plant lineages and are predicted to occur across different parts of the globe, interspersed with other types of landscapes. We tested whether the mean age of a plant community is associated with occurrence on OCBILs, as predicted by climatic stability and poor soil environments. Using digitized occurrence data for seed plants occurring in Australia (7033 species), sub-Saharan Africa (3990 species) and South America (44 482 species), regions that comprise commonly investigated OCBILs (Southwestern Australian Floristic Region, Greater Cape Floristic Region and campos rupestres), and phylogenies pruned to match the species occurrences, we tested for associations between environmental data (current climate, soil composition, elevation and climatic stability) and two novel metrics developed here that capture the age of a community (mean tip length and mean node height). Our results indicate that plant community ages are influenced by a combination of multiple environmental predictors that vary globally; we did not find statistically strong associations between the environments of OCBIL areas and community age, in contrast to the prediction for these landscapes. The Cape Floristic Region was the only OCBIL that showed a significant, although not strong, overlap with old communities. 
    more » « less