skip to main content


Title: List-decodability with large radius for Reed-Solomon codes
List-decodability of Reed-Solomon codes has received a lot of attention, but the best-possible dependence between the parameters is still not well-understood. In this work, we focus on the case where the list-decoding radius is of the form r=1−ε for ε tending to zero. Our main result states that there exist Reed-Solomon codes with rate Ω(ε) which are (1−ε,O(1/ε)) -list-decodable, meaning that any Hamming ball of radius 1−ε contains at most O(1/ε) codewords. This trade-off between rate and list-decoding radius is best-possible for any code with list size less than exponential in the block length. By achieving this trade-off between rate and list-decoding radius we improve a recent result of Guo, Li, Shangguan, Tamo, and Wootters, and resolve the main motivating question of their work. Moreover, while their result requires the field to be exponentially large in the block length, we only need the field size to be polynomially large (and in fact, almost-linear suffices). We deduce our main result from a more general theorem, in which we prove good list-decodability properties of random puncturings of any given code with very large distance.  more » « less
Award ID(s):
2100157
NSF-PAR ID:
10328620
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS)
Page Range / eLocation ID:
720 to 726
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce a novel family of expander-based error correcting codes. These codes can be sampled with randomness linear in the block-length, and achieve list decoding capacity (among other local properties). Our expander-based codes can be made starting from any family of sufficiently low-bias codes, and as a consequence, we give the first construction of a family of algebraic codes that can be sampled with linear randomness and achieve list-decoding capacity. We achieve this by introducing the notion of a pseudorandom puncturing of a code, where we select n indices of a base code C ⊂ 𝔽_q^m in a correlated fashion. Concretely, whereas a random linear code (i.e. a truly random puncturing of the Hadamard code) requires O(n log(m)) random bits to sample, we sample a pseudorandom linear code with O(n + log (m)) random bits by instantiating our pseudorandom puncturing as a length n random walk on an exapnder graph on [m]. In particular, we extend a result of Guruswami and Mosheiff (FOCS 2022) and show that a pseudorandom puncturing of a small-bias code satisfies the same local properties as a random linear code with high probability. As a further application of our techniques, we also show that pseudorandom puncturings of Reed-Solomon codes are list-recoverable beyond the Johnson bound, extending a result of Lund and Potukuchi (RANDOM 2020). We do this by instead analyzing properties of codes with large distance, and show that pseudorandom puncturings still work well in this regime. 
    more » « less
  2. Lifted Reed Solomon Codes (Guo, Kopparty, Sudan 2013) were introduced in the context of locally correctable and testable codes. They are multivariate polynomials whose restriction to any line is a codeword of a Reed-Solomon code. We consider a generalization of their construction, which we call lifted multiplicity codes. These are multivariate polynomial codes whose restriction to any line is a codeword of a multiplicity code (Kopparty, Saraf, Yekhanin 2014). We show that lifted multiplicity codes have a better trade-off between redundancy and a notion of locality called the t-disjoint-repair-group property than previously known constructions. More precisely, we show that, for t <=sqrt{N}, lifted multiplicity codes with length N and redundancy O(t^{0.585} sqrt{N}) have the property that any symbol of a codeword can be reconstructed in t different ways, each using a disjoint subset of the other coordinates. This gives the best known trade-off for this problem for any super-constant t < sqrt{N}. We also give an alternative analysis of lifted Reed Solomon codes using dual codes, which may be of independent interest. 
    more » « less
  3. A collection of sets displays aproximity gapwith respect to some property if for every set in the collection, either (i) all members areδ-close to the property in relative Hamming distance or (ii) only a tiny fraction of members areδ-close to the property. In particular, no set in the collection has roughly half of its membersδ-close to the property and the othersδ-far from it.

    We show that the collection of affine spaces displays a proximity gap with respect to Reed–Solomon (RS) codes, even over small fields, of size polynomial in the dimension of the code, and the gap applies to anyδsmaller than the Johnson/Guruswami–Sudan list-decoding bound of the RS code. We also show near-optimal gap results, over fields of (at least)linearsize in the RS code dimension, forδsmaller than the unique decoding radius. Concretely, ifδis smaller than half the minimal distance of an RS code\(V\subset {\mathbb {F}}_q^n \), every affine space is either entirelyδ-close to the code, or alternatively at most an (n/q)-fraction of it isδ-close to the code. Finally, we discuss several applications of our proximity gap results to distributed storage, multi-party cryptographic protocols, and concretely efficient proof systems.

    We prove the proximity gap results by analyzing the execution of classical algebraic decoding algorithms for Reed–Solomon codes (due to Berlekamp–Welch and Guruswami–Sudan) on aformal elementof an affine space. This involves working with Reed–Solomon codes whose base field is an (infinite) rational function field. Our proofs are obtained by developing an extension (to function fields) of a strategy of Arora and Sudan for analyzing low-degree tests.

     
    more » « less
  4. null (Ed.)
    A collection of sets displays a proximity gap with respect to some property if for every set in the collection, either (i) all members are δ-close to the property in relative Hamming distance or (ii) only a tiny fraction of members are δ-close to the property. In particular, no set in the collection has roughly half of its members δ-close to the property and the others δ-far from it. We show that the collection of affine spaces displays a proximity gap with respect to Reed-Solomon (RS) codes, even over small fields, of size polynomial in the dimension of the code, and the gap applies to any δ smaller than the Johnson/Guruswami-Sudan list-decoding bound of the RS code. We also show near-optimal gap results, over fields of (at least) linear size in the RS code dimension, for δ smaller than the unique decoding radius. Concretely, if δ is smaller than half the minimal distance of an RS code V ⊂ Fq n , every affine space is either entirely δ-close to the code, or alternatively at most an ( n/q)-fraction of it is δ-close to the code. Finally, we discuss several applications of our proximity gap results to distributed storage, multi-party cryptographic protocols, and concretely efficient proof systems. We prove the proximity gap results by analyzing the execution of classical algebraic decoding algorithms for Reed-Solomon codes (due to Berlekamp-Welch and Guruswami-Sudan) on a formal element of an affine space. This involves working with Reed-Solomon codes whose base field is an (infinite) rational function field. Our proofs are obtained by developing an extension (to function fields) of a strategy of Arora and Sudan for analyzing low-degree tests. 
    more » « less
  5. Establishing the complexity of {\em Bounded Distance Decoding} for Reed-Solomon codes is a fundamental open problem in coding theory, explicitly asked by Guruswami and Vardy (IEEE Trans. Inf. Theory, 2005). The problem is motivated by the large current gap between the regime when it is NP-hard, and the regime when it is efficiently solvable (i.e., the Johnson radius). We show the first NP-hardness results for asymptotically smaller decoding radii than the maximum likelihood decoding radius of Guruswami and Vardy. Specifically, for Reed-Solomon codes of length $N$ and dimension $K=O(N)$, we show that it is NP-hard to decode more than $ N-K- c\frac{\log N}{\log\log N}$ errors (with $c>0$ an absolute constant). Moreover, we show that the problem is NP-hard under quasipolynomial-time reductions for an error amount $> N-K- c\log{N}$ (with $c>0$ an absolute constant). An alternative natural reformulation of the Bounded Distance Decoding problem for Reed-Solomon codes is as a {\em Polynomial Reconstruction} problem. In this view, our results show that it is NP-hard to decide whether there exists a degree $K$ polynomial passing through $K+ c\frac{\log N}{\log\log N}$ points from a given set of points $(a_1, b_1), (a_2, b_2)\ldots, (a_N, b_N)$. Furthermore, it is NP-hard under quasipolynomial-time reductions to decide whether there is a degree $K$ polynomial passing through $K+c\log{N}$ many points. These results follow from the NP-hardness of a generalization of the classical Subset Sum problem to higher moments, called {\em Moments Subset Sum}, which has been a known open problem, and which may be of independent interest. We further reveal a strong connection with the well-studied Prouhet-Tarry-Escott problem in Number Theory, which turns out to capture a main barrier in extending our techniques. We believe the Prouhet-Tarry-Escott problem deserves further study in the theoretical computer science community. 
    more » « less