We study the problem of optimal information sharing in the context of a service system. In particular, we consider an unobservable single server queue offering a service at a fixed price to a Poisson arrival of delay-sensitive customers. The service provider can observe the queue, and may share information about the state of the queue with each arriving customer. The customers are Bayesian and strategic, and incorporate any information provided by the service provider into their prior beliefs about the queue length before making the decision whether to join the queue or leave without obtaining service. We pose the followingmore »
How to get-toilet-paper.com? Provision of Information as a Public Good
In this paper, we describe the implementation of an information sharing platform, got-toilet-paper.com. We create this web page in response to the COVID-19 pandemic to help the Pittsburgh, PA community share information about congestion and product shortages in supermarkets. We show that the public good problem of the platform makes it difficult for the platform to operate. In particular, there is sizable demand for the information, but supply satis es only a small fraction of demand. We provide a theoretical model and show that the first best outcomes cannot be obtained in a free market and the best symmetric equilibrium outcome decreases as the number of participant increases. Also, the best symmetric equilibrium has two problems, cost inefficiency and positive probability of termination. We discuss two potential solutions. The first is a uniform random sharing mechanism, which implies randomly selecting one person every period who will be responsible for information sharing. It is ex-post individually rational but hard to implement. The second solution is the one that we began implementing. It implies selecting a person at the beginning and make her responsible to share information every period, while reimbursing her cost. We discuss the reasons for high demand and low supply more »
- Award ID(s):
- 1739413
- Publication Date:
- NSF-PAR ID:
- 10298454
- Journal Name:
- 4th Workshop on Mechanism Design for Social Good
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Purpose The ability to identify the scholarship of individual authors is essential for performance evaluation. A number of factors hinder this endeavor. Common and similarly spelled surnames make it difficult to isolate the scholarship of individual authors indexed on large databases. Variations in name spelling of individual scholars further complicates matters. Common family names in scientific powerhouses like China make it problematic to distinguish between authors possessing ubiquitous and/or anglicized surnames (as well as the same or similar first names). The assignment of unique author identifiers provides a major step toward resolving these difficulties. We maintain, however, that inmore »
-
We consider information design in spatial resource competition, motivated by ride sharing platforms sharing information with drivers about rider demand. Each of N co-located agents (drivers) decides whether to move to another location with an uncertain and possibly higher resource level (rider demand), where the utility for moving increases in the resource level and decreases in the number of other agents that move. A principal who can observe the resource level wishes to share this information in a way that ensures a welfare-maximizing number of agents move. Analyzing the principal’s information design problem using the Bayesian persuasion framework, we studymore »
-
Mining pools decrease the variance in the income of cryptocurrency miners (compared to solo mining) by distributing rewards to participating miners according to the shares submitted over a period of time. The most common definition of a “share” is a proof-of-work for a difficulty level lower than that required for block authorization—for example, a hash with at least 65 leading zeroes (in binary) rather than at least 75. The first contribution of this paper is to investigate more sophisticated approaches to pool reward distribution that use multiple classes of shares—for example, corresponding to differing numbers of leading zeroes—and assign differentmore »
-
In this paper, we study Federated Bandit, a decentralized Multi-Armed Bandit problem with a set of N agents, who can only communicate their local data with neighbors described by a connected graph G. Each agent makes a sequence of decisions on selecting an arm from M candidates, yet they only have access to local and potentially biased feedback/evaluation of the true reward for each action taken. Learning only locally will lead agents to sub-optimal actions while converging to a no-regret strategy requires a collection of distributed data. Motivated by the proposal of federated learning, we aim for a solution withmore »