skip to main content

Title: A Strongly Polynomial Algorithm for Linear Exchange Markets
We present a strongly polynomial algorithm for computing an equilibrium in Arrow-Debreu exchange markets with linear utilities. Our algorithm is based on a variant of the weakly polynomial Duan–Mehlhorn (DM) algorithm. We use the DM algorithm as a subroutine to identify revealed edges—that is, pairs of agents and goods that must correspond to the best bang-per-buck transactions in every equilibrium solution. Every time a new revealed edge is found, we use another subroutine that decides if there is an optimal solution using the current set of revealed edges or, if none exists, finds the solution that approximately minimizes the violation of the demand and supply constraints. This task can be reduced to solving a linear program (LP). Even though we are unable to solve this LP in strongly polynomial time, we show that it can be approximated by a simpler LP with two variables per inequality that is solvable in strongly polynomial time.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Operations Research
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Megow, Nicole ; Smith, Adam (Ed.)
    In this paper, we study the weighted k-server problem on the uniform metric in both the offline and online settings. We start with the offline setting. In contrast to the (unweighted) k-server problem which has a polynomial-time solution using min-cost flows, there are strong computational lower bounds for the weighted k-server problem, even on the uniform metric. Specifically, we show that assuming the unique games conjecture, there are no polynomial-time algorithms with a sub-polynomial approximation factor, even if we use c-resource augmentation for c < 2. Furthermore, if we consider the natural LP relaxation of the problem, then obtaining a bounded integrality gap requires us to use at least 𝓁 resource augmentation, where 𝓁 is the number of distinct server weights. We complement these results by obtaining a constant-approximation algorithm via LP rounding, with a resource augmentation of (2+ε)𝓁 for any constant ε > 0. In the online setting, an exp(k) lower bound is known for the competitive ratio of any randomized algorithm for the weighted k-server problem on the uniform metric. In contrast, we show that 2𝓁-resource augmentation can bring the competitive ratio down by an exponential factor to only O(𝓁² log 𝓁). Our online algorithm uses the two-stage approach of first obtaining a fractional solution using the online primal-dual framework, and then rounding it online. 
    more » « less
  2. In the Colonel Blotto game, which was initially introduced by Borel in 1921, two colonels simultaneously distribute their troops across different battlefields. The winner of each battlefield is determined independently by a winner-takes-all rule. The ultimate payoff for each colonel is the number of battlefields won. The Colonel Blotto game is commonly used for analyzing a wide range of applications from the U.S. Presidential election to innovative technology competitions to advertising, sports, and politics. There are persistent efforts to find the optimal strategies for the Colonel Blotto game. However, the first polynomial-time algorithm for that has very recently been provided by Ahmadinejad, Dehghani, Hajiaghayi, Lucier, Mahini, and Seddighin. Their algorithm consists of an exponential size linear program (LP), which they solve using the ellipsoid method. Because of the use of the ellipsoid method, despite its significant theoretical importance, this algorithm is highly impractical. In general, even the simplex method (despite its exponential running time in practice) performs better than the ellipsoid method in practice. In this paper, we provide the first polynomial-size LP formulation of the optimal strategies for the Colonel Blotto game using linear extension techniques. Roughly speaking, we consider the natural representation of the strategy space polytope and transform it to a higher dimensional strategy space, which interestingly has exponentially fewer facets. In other words, we add a few variables to the LP such that, surprisingly, the number of constraints drops down to a polynomial. We use this polynomial-size LP to provide a simpler and significantly faster algorithm for finding optimal strategies of the Colonel Blotto game. We further show this representation is asymptotically tight, which means there exists no other linear representation of the strategy space with fewer constraints. We also extend our approach to multidimensional Colonel Blotto games, in which players may have different sorts of budgets, such as money, time, human resources, etc. By implementing this algorithm, we are able to run tests that were previously impossible to solve in a reasonable time. This information allows us to observe some interesting properties of Colonel Blotto; for example, we find out the behavior of players in the discrete model is very similar to the continuous model Roberson solved. 
    more » « less
  3. In this work we advance the understanding of the fundamental limits of computation for Binary Polynomial Optimization (BPO), which is the problem of maximizing a given polynomial function over all binary points. In our main result we provide a novel class of BPO that can be solved efficiently both from a theoretical and computational perspective. In fact, we give a strongly polynomial-time algorithm for instances whose corresponding hypergraph is β-acyclic. We note that the β-acyclicity assumption is natural in several applications including relational database schemes and the lifted multicut problem on trees. Due to the novelty of our proving technique, we obtain an algorithm which is interesting also from a practical viewpoint. This is because our algorithm is very simple to implement and the running time is a polynomial of very low degree in the number of nodes and edges of the hypergraph. Our result completely settles the computational complexity of BPO over acyclic hypergraphs, since the problem is NP-hard on α-acyclic instances. Our algorithm can also be applied to any general BPO problem that contains β-cycles. For these problems, the algorithm returns a smaller instance together with a rule to extend any optimal solution of the smaller instance to an optimal solution of the original instance. 
    more » « less
  4. We consider computational games, sequences of games G = (G1,G2,...) where, for all n, Gn has the same set of players. Computational games arise in electronic money systems such as Bitcoin, in cryptographic protocols, and in the study of generative adversarial networks in machine learning. Assuming that one-way functions exist, we prove that there is 2-player zero-sum computational game G such that, for all n, the size of the action space in Gn is polynomial in n and the utility function in Gn is computable in time polynomial in n, and yet there is no ε-Nash equilibrium if players are restricted to using strategies computable by polynomial-time Turing machines, where we use a notion of Nash equilibrium that is tailored to computational games. We also show that an ε-Nash equilibrium may not exist if players are constrained to perform at most T computational steps in each of the games in the sequence. On the other hand, we show that if players can use arbitrary Turing machines to compute their strategies, then every computational game has an ε-Nash equilibrium. These results may shed light on competitive settings where the availability of more running time or faster algorithms can lead to a “computational arms race”, precluding the existence of equilibrium. They also point to inherent limitations of concepts such as “best response” and Nash equilibrium in games with resource-bounded players. 
    more » « less
  5. We study the problem of maximizing a non-monotone submodular function subject to a cardinality constraint in the streaming model. Our main contribution is a single-pass (semi-)streaming algorithm that uses roughly $O(k / \varepsilon^2)$ memory, where $k$ is the size constraint. At the end of the stream, our algorithm post-processes its data structure using any offline algorithm for submodular maximization, and obtains a solution whose approximation guarantee is $\frac{\alpha}{1+\alpha}-\varepsilon$, where $\alpha$ is the approximation of the offline algorithm. If we use an exact (exponential time) post-processing algorithm, this leads to $\frac{1}{2}-\varepsilon$ approximation (which is nearly optimal). If we post-process with the algorithm of \cite{buchbinder2019constrained}, that achieves the state-of-the-art offline approximation guarantee of $\alpha=0.385$, we obtain $0.2779$-approximation in polynomial time, improving over the previously best polynomial-time approximation of $0.1715$ due to \cite{feldman2018less}. It is also worth mentioning that our algorithm is combinatorial and deterministic, which is rare for an algorithm for non-monotone submodular maximization, and enjoys a fast update time of $O(\frac{\log k + \log (1/\alpha {\varepsilon^2})$ per element. 
    more » « less