The binary-forking model is a parallel computation model, formally defined by Blelloch et al., in which a thread can fork a concurrent child thread, recursively and asynchronously. The model incurs a cost of Theta(log n) to spawn or synchronize n tasks or threads. The binary-forking model realistically captures the performance of parallel algorithms implemented using modern multithreaded programming languages on multicore shared-memory machines. In contrast, the widely studied theoretical PRAM model does not consider the cost of spawning and synchronizing threads, and as a result, algorithms achieving optimal performance bounds in the PRAM model may not be optimal in the binary-forking model. Often, algorithms need to be redesigned to achieve optimal performance bounds in the binary-forking model and the non-constant synchronization cost makes the task challenging. In this paper, we show that in the binary-forking model we can achieve optimal or near-optimal span with negligible or no asymptotic blowup in work for comparison-based sorting, Strassen's matrix multiplication (MM), and the Fast Fourier Transform (FFT). Our major results are as follows: (1) A randomized comparison-based sorting algorithm with optimal O(log n) span and O(nlog n) work, both w.h.p. in n. (2) An optimal O(log n) span algorithm for Strassen's matrix multiplicationmore »
Low-Span Parallel Algorithms for the Binary-Forking Model
The binary-forking model is a parallel computation model, formally defined by Blelloch et al., in which a thread can fork a concurrent child thread, recursively and asynchronously. The model incurs a cost of Theta(log n) to spawn or synchronize n tasks or threads. The binary-forking model realistically captures the performance of parallel algorithms implemented using modern multithreaded programming languages on multicore shared-memory machines. In contrast, the widely studied theoretical PRAM model does not consider the cost of spawning and synchronizing threads, and as a result, algorithms achieving optimal performance bounds in the PRAM model may not be optimal in the binary-forking model. Often, algorithms need to be redesigned to achieve optimal performance bounds in the binary-forking model and the non-constant synchronization cost makes the task challenging.
In this paper, we show that in the binary-forking model we can achieve optimal or near-optimal span with negligible or no asymptotic blowup in work for comparison-based sorting, Strassen's matrix multiplication (MM), and the Fast Fourier Transform (FFT).
Our major results are as follows: (1) A randomized comparison-based sorting algorithm with optimal O(log n) span and O(nlog n) work, both w.h.p. in n. (2) An optimal O(log n) span algorithm for Strassen's matrix multiplication (MM) with more »
- Publication Date:
- NSF-PAR ID:
- 10298539
- Journal Name:
- Proc. 33st ACM on Symposium on Parallelism in Algorithms and Architectures (SPAA)
- Page Range or eLocation-ID:
- 22 to 34
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Azar, Yossi (Ed.)A data-oblivious algorithm is an algorithm whose memory access pattern is independent of the input values. We initiate the study of parallel data oblivious algorithms on realistic multicores, best captured by the binary fork-join model of computation. We present a data-oblivious CREW binary fork-join sorting algorithm with optimal total work and optimal (cache-oblivious) cache complexity, and in O(łog n łog łog n) span (i.e., parallel time); these bounds match the best-known bounds for binary fork-join cache-efficient insecure algorithms. Using our sorting algorithm as a core primitive, we show how to data-obliviously simulate general PRAM algorithms in the binary fork-join model with non-trivial efficiency, and we present data-oblivious algorithms for several applications including list ranking, Euler tour, tree contraction, connected components, and minimum spanning forest. All of our data oblivious algorithms have bounds that either match or improve over the best known bounds for insecure algorithms. Complementing these asymptotically efficient results, we present a practical variant of our sorting algorithm that is self-contained and potentially implementable. It has optimal caching cost, and it is only a łog łog n factor off from optimal work and about a łog n factor off in terms of span. We also present an EREW variantmore »
-
In this paper we consider the following sparse recovery problem. We have query access to a vector 𝐱 ∈ ℝ^N such that x̂ = 𝐅 𝐱 is k-sparse (or nearly k-sparse) for some orthogonal transform 𝐅. The goal is to output an approximation (in an 𝓁₂ sense) to x̂ in sublinear time. This problem has been well-studied in the special case that 𝐅 is the Discrete Fourier Transform (DFT), and a long line of work has resulted in sparse Fast Fourier Transforms that run in time O(k ⋅ polylog N). However, for transforms 𝐅 other than the DFT (or closely related transforms like the Discrete Cosine Transform), the question is much less settled. In this paper we give sublinear-time algorithms - running in time poly(k log(N)) - for solving the sparse recovery problem for orthogonal transforms 𝐅 that arise from orthogonal polynomials. More precisely, our algorithm works for any 𝐅 that is an orthogonal polynomial transform derived from Jacobi polynomials. The Jacobi polynomials are a large class of classical orthogonal polynomials (and include Chebyshev and Legendre polynomials as special cases), and show up extensively in applications like numerical analysis and signal processing. One caveat of our work is that wemore »
-
In several emerging technologies for computer memory (main memory), the cost of reading is significantly cheaper than the cost of writing. Such asymmetry in memory costs poses a fundamentally different model from the RAM for algorithm design. In this paper we study lower and upper bounds for various problems under such asymmetric read and write costs. We consider both the case in which all but O(1) memory has asymmetric cost, and the case of a small cache of symmetric memory. We model both cases using the (M,w)-ARAM, in which there is a small (symmetric) memory of size M and a large unbounded (asymmetric) memory, both random access, and where reading from the large memory has unit cost, but writing has cost w >> 1. For FFT and sorting networks we show a lower bound cost of Omega(w*n*log_{w*M}(n)), which indicates that it is not possible to achieve asymptotic improvements with cheaper reads when w is bounded by a polynomial in M. Moreover, there is an asymptotic gap (of min(w,log(n)/log(w*M)) between the cost of sorting networks and comparison sorting in the model. This contrasts with the RAM, and most other models, in which the asymptotic costs are the same. We also showmore »
-
Fast linear transforms are ubiquitous in machine learning, including the discrete Fourier transform, discrete cosine transform, and other structured transformations such as convolutions. All of these transforms can be represented by dense matrix-vector multiplication, yet each has a specialized and highly efficient (subquadratic) algorithm. We ask to what extent hand-crafting these algorithms and implementations is necessary, what structural prior they encode, and how much knowledge is required to automatically learn a fast algorithm for a provided structured transform. Motivated by a characterization of fast matrix-vector multiplication as products of sparse matrices, we introduce a parameterization of divide-and-conquer methods that is capable of representing a large class of transforms. This generic formulation can automatically learn an efficient algorithm for many important transforms; for example, it recovers the O(N logN) Cooley-Tukey FFT algorithm to machine precision, for dimensions N up to 1024. Furthermore, our method can be incorporated as a lightweight replacement of generic matrices in machine learning pipelines to learn efficient and compressible transformations. On a standard task of compressing a single hidden-layer network, our method exceeds the classification accuracy of unconstrained matrices on CIFAR-10 by 3.9 points—the first time a structured approach has done so—with 4X faster inference speed andmore »