skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Randomized Cup Game Algorithms Against Strong Adversaries
In each step of the cup game on n cups, a filler distributes up to 1" water among the cups, and then an emptier removes 1 unit of water from a single cup. The emptier’s goal is to minimize the height of the fullest cup, also known as the backlog. The cup emptying game has found extensive applications to processor scheduling, network- switch buffer management, quality of service guarantees, and data- structure deamortization. The greedy emptying algorithm (i.e., always remove from the fullest cup) is known to achieve backlog O(log n) and to be the optimal deterministic algorithm. Randomized algorithms can do significantly better, achieving backlog O(log log n) with high probability, as long as " is not too small. In order to achieve these improvements, the known randomized algorithms require that the filler is an oblivious adversary, unaware of which cups the emptier chooses to empty out of at each step. Such randomized guarantees are known to be impossible against fully adaptive fillers. We show that, even when the filler is just slightly non- adaptive, randomized emptying algorithms can still guarantee a backlog of O(log log n). In particular, we give randomized ran- domized algorithms against an elevated adaptive filler, which is an adaptive filler that can see the precise fills of every cup containing more than 3 units of water, but not of the cups containing less than 3 units.  more » « less
Award ID(s):
1938180 2106999 2118620
PAR ID:
10298569
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the annual ACMSIAM symposium on discrete algorithms
ISSN:
2160-1445
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The \emph{p-processor cup game} is a classic and widely studied scheduling problem that captures the setting in which a p-processor machine must assign tasks to processors over time in order to ensure that no individual task ever falls too far behind. The problem is formalized as a multi-round game in which two players, a filler (who assigns work to tasks) and an emptier (who schedules tasks) compete. The emptier's goal is to minimize backlog, which is the maximum amount of outstanding work for any task. Recently, Kuszmaul and Westover (ITCS, 2021) proposed the \emph{variable-processor cup game}, which considers the same problem, except that the amount of resources available to the players (i.e., the number p of processors) fluctuates between rounds of the game. They showed that this seemingly small modification fundamentally changes the dynamics of the game: whereas the optimal backlog in the fixed p-processor game is Θ(logn), independent of p, the optimal backlog in the variable-processor game is Θ(n). The latter result was only known to apply to games with \emph{exponentially many} rounds, however, and it has remained an open question what the optimal tradeoff between time and backlog is for shorter games. This paper establishes a tight trade-off curve between time and backlog in the variable-processor cup game. Importantly, we prove that for a game consisting of t rounds, the optimal backlog is Θ(n) if and only if t≥Ω(n3). Our techniques also allow for us to resolve several other open questions concerning how the variable-processor cup game behaves in beyond-worst-case-analysis settings. 
    more » « less
  2. Expander graphs play a central role in graph theory and algorithms. With a number of powerful algorithmic tools developed around them, such as the Cut-Matching game, expander pruning, expander decomposition, and algorithms for decremental All-Pairs Shortest Paths (APSP) in expanders, to name just a few, the use of expanders in the design of graph algorithms has become ubiquitous. Specific applications of interest to us are fast deterministic algorithms for cut problems in static graphs, and algorithms for dynamic distance-based graph problems, such as APSP. Unfortunately, the use of expanders in these settings incurs a number of drawbacks. For example, the best currently known algorithm for decremental APSP in constant-degree expanders can only achieve a (log n) O(1/ 2 ) -approximation with n 1+O( ) total update time for any . All currently known algorithms for the Cut Player in the Cut-Matching game are either randomized, or provide rather weak guarantees: expansion 1/(log n) 1/ with running time n 1+O( ) . This, in turn, leads to somewhat weak algorithmic guarantees for several central cut problems: the best current almost linear time deterministic algorithms for Sparsest Cut, Lowest Conductance Cut, and Balanced Cut can only achieve approximation factor (log n) ω(1). Lastly, when relying on expanders in distancebased problems, such as dynamic APSP, via current methods, it seems inevitable that one has to settle for approximation factors that are at least Ω(log n). In contrast, we do not have any negative results that rule out a factor-5 approximation with near-linear total update time. In this paper we propose the use of well-connected graphs, and introduce a new algorithmic toolkit for such graphs that, in a sense, mirrors the above mentioned algorithmic tools for expanders. One of these new tools is the Distanced Matching game, an analogue of the Cut-Matching game for well-connected graphs. We demonstrate the power of these new tools by obtaining better results for several of the problems mentioned above. First, we design an algorithm for decremental APSP in expanders with significantly better guarantees: in a constant-degree expander, the algorithm achieves (log n) 1+o(1)-approximation, with total update time n 1+o(1). We also obtain a deterministic algorithm for the Cut Player in the Cut-Matching game that achieves expansion 1 (log n) 5+o(1) in time n 1+o(1), deterministic almost linear-time algorithms for Sparsest Cut, Lowest-Conductance Cut, and Minimum Balanced Cut with approximation factors O(poly log n), as well as improved deterministic algorithm for Expander Decomposition. We believe that the use of well-connected graphs instead of expanders in various dynamic distance-based problems (such as APSP in general graphs) has the potential of providing much stronger guarantees, since we are no longer necessarily restricted to superlogarithmic approximation factors. 
    more » « less
  3. We consider the problem of maximizing the multilinear extension of a submodular function subject a single matroid constraint or multiple packing constraints with a small number of adaptive rounds of evaluation queries. We obtain the first algorithms with low adaptivity for submodular maximization with a matroid constraint. Our algorithms achieve a $$1-1/e-\epsilon$$ approximation for monotone functions and a $$1/e-\epsilon$$ approximation for non-monotone functions, which nearly matches the best guarantees known in the fully adaptive setting. The number of rounds of adaptivity is $$O(\log^2{n}/\epsilon^3)$$, which is an exponential speedup over the existing algorithms. We obtain the first parallel algorithm for non-monotone submodular maximization subject to packing constraints. Our algorithm achieves a $$1/e-\epsilon$$ approximation using $$O(\log(n/\epsilon) \log(1/\epsilon) \log(n+m)/ \epsilon^2)$$ parallel rounds, which is again an exponential speedup in parallel time over the existing algorithms. For monotone functions, we obtain a $$1-1/e-\epsilon$$ approximation in $$O(\log(n/\epsilon)\log(m)/\epsilon^2)$$ parallel rounds. The number of parallel rounds of our algorithm matches that of the state of the art algorithm for solving packing LPs with a linear objective (Mahoney et al., 2016). Our results apply more generally to the problem of maximizing a diminishing returns submodular (DR-submodular) function. 
    more » « less
  4. In this paper, we study the finite-sum convex optimization problem focusing on the general convex case. Recently, the study of variance reduced (VR) methods and their accelerated variants has made exciting progress. However, the step size used in the existing VR algorithms typically depends on the smoothness parameter, which is often unknown and requires tuning in practice. To address this problem, we propose two novel adaptive VR algorithms: Adaptive Variance Reduced Accelerated Extra-Gradient (AdaVRAE) and Adaptive Variance Reduced Accelerated Gradient (AdaVRAG). Our algorithms do not require knowledge of the smoothness parameter. AdaVRAE uses $$\mathcal{O}\left(n\log\log n+\sqrt{\frac{n\beta}{\epsilon}}\right)$$ and AdaVRAG uses $$\mathcal{O}\left(n\log\log n+\sqrt{\frac{n\beta\log\beta}{\epsilon}}\right)$$ gradient evaluations to attain an $$\mathcal{O}(\epsilon)$$-suboptimal solution, where $$n$$ is the number of functions in the finite sum and $$\beta$$ is the smoothness parameter. This result matches the best-known convergence rate of non-adaptive VR methods and it improves upon the convergence of the state of the art adaptive VR method, AdaSVRG. We demonstrate the superior performance of our algorithms compared with previous methods in experiments on real-world datasets. 
    more » « less
  5. We consider the problem of implementing randomized wait-free consensus from max registers under the assumption of an oblivious adversary. We show that max registers solve m-valued consensus for arbitrary m in expected O(log^* n) steps per process, beating the Omega(log m/log log m) lower bound for ordinary registers when m is large and the best previously known O(log log n) upper bound when m is small. A simple max-register implementation based on double-collect snapshots translates this result into an O(n log n) expected step implementation of m-valued consensus from n single-writer registers, improving on the best previously-known bound of O(n log^2 n) for single-writer registers. 
    more » « less