skip to main content

Search for: All records

Award ID contains: 2106999

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Finding the connected components of a graph is a fundamental prob- lem with uses throughout computer science and engineering. The task of computing connected components becomes more difficult when graphs are very large, or when they are dynamic, meaning the edge set changes over time subject to a stream of edge inser- tions and deletions. A natural approach to computing the connected components on a large, dynamic graph stream is to buy enough RAM to store the entire graph. However, the requirement that the graph fit in RAM is prohibitive for very large graphs. Thus, there is an unmet need for systems that can process dense dynamic graphs, especially when those graphs are larger than available RAM. We present a new high-performance streaming graph-processing system for computing the connected components of a graph. This system, which we call GraphZeppelin, uses new linear sketching data structures (CubeSketch) to solve the streaming connected components problem and as a result requires space asymptotically smaller than the space required for a lossless representation of the graph. GraphZeppelin is optimized for massive dense graphs: GraphZeppelin can process millions of edge updates (both inser- tions and deletions) per second, even when the underlying graph is farmore »too large to fit in available RAM. As a result GraphZeppelin vastly increases the scale of graphs that can be processed.« less
  2. For nearly six decades, the central open question in the study of hash tables has been to determine the optimal achievable tradeoff curve between time and space. State-of-the-art hash tables offer the following guarantee: If keys/values are Θ(logn) bits each, then it is possible to achieve constant-time insertions/deletions/queries while wasting only O(loglogn) bits of space per key when compared to the information-theoretic optimum. Even prior to this bound being achieved, the target of O(log log n) wasted bits per key was known to be a natural end goal, and was proven to be optimal for a number of closely related problems (e.g., stable hashing, dynamic retrieval, and dynamically-resized filters). This paper shows that O(log log n) wasted bits per key is not the end of the line for hashing. In fact, for any k ∈ [log∗ n], it is possible to achieve O(k)-time insertions/deletions, O(1)-time queries, and O(log(k) n) = Ologlog···logn 􏰟 􏰞􏰝 􏰠 k wasted bits per key (all with high probability in n). This means that, each time we increase inser- tion/deletion time by an additive constant, we reduce the wasted bits per key exponentially. We further show that this tradeoff curve is the best achievable by anymore »of a large class of hash tables, including any hash table designed using the current framework for making constant-time hash tables succinct. Our results hold not just for fixed-capacity hash tables, but also for hash tables that are dynamically resized (this is a fundamental departure from what is possible for filters); and for hash tables that store very large keys/values, each of which can be up to no(1) bits (this breaks with the conventional wisdom that larger keys/values should lead to more wasted bits per key). For very small keys/values, we are able to tighten our bounds to o(1) wasted bits per key, even when k = O(1). Building on this, we obtain a constant-time dynamic filter that uses n􏰕logε−1􏰖+nloge+o(n) bits of space for a wide choice of« less
  3. A data structure A is said to be dynamically optimal over a class of data structures C if A is constant- competitive with every data structure C ∈ C. Much of the research on binary search trees in the past forty years has focused on studying dynamic optimality over the class of binary search trees that are modified via rotations (and indeed, the question of whether splay trees are dynamically optimal has gained notoriety as the so-called dynamic-optimality conjecture). Recently, researchers have extended this to consider dynamic optimality over certain classes of external-memory search trees. In particular, Demaine, Iacono, Koumoutsos, and Langerman propose a class of external-memory trees that support a notion of tree rotations, and then give an elegant data structure, called the Belga B-tree, that is within an O(log log N )-factor of being dynamically optimal over this class. In this paper, we revisit the question of how dynamic optimality should be defined in external memory. A defining characteristic of external-memory data structures is that there is a stark asymmetry between queries and inserts/updates/deletes: by making the former slightly asymptotically slower, one can make the latter significantly asymptotically faster (even allowing for operations with sub-constant amortized I/Os). Thismore »asymmetry makes it so that rotation-based search trees are not optimal (or even close to optimal) in insert/update/delete-heavy external-memory workloads. To study dynamic optimality for such workloads, one must consider a different class of data structures. The natural class of data structures to consider are what we call buffered-propagation trees. Such trees can adapt dynamically to the locality properties of an input sequence in order to optimize the interactions between different inserts/updates/deletes and queries. We also present a new form of beyond-worst-case analysis that allows for us to formally study a continuum between static and dynamic optimality. Finally, we give a novel data structure, called the Jεllo Tree, that is statically optimal and that achieves dynamic optimality for a large natural class of inputs defined by our beyond-worst-case analysis.« less
  4. For any forest G = (V, E) it is possible to orient the edges E so that no vertex in V has out-degree greater than 1. This paper considers the incremental edge-orientation problem, in which the edges E arrive over time and the algorithm must maintain a low-out-degree edge orientation at all times. We give an algorithm that maintains a maximum out-degree of 3 while flipping at most O(log log n) edge orientations per edge insertion, with high probability in n. The algorithm requires worst-case time O(log n log log n) per insertion, and takes amortized time O(1). The previous state of the art required up to O(log n/ log log n) edge flips per insertion. We then apply our edge-orientation results to the problem of dynamic Cuckoo hashing. The problem of designing simple families H of hash functions that are compatible with Cuckoo hashing has received extensive attention. These families H are known to satisfy static guarantees, but do not come typically with dynamic guarantees for the running time of inserts and deletes. We show how to transform static guarantees (for 1-associativity) into near-state-of-the-art dynamic guarantees (for O(1)-associativity) in a black-box fashion. Rather than relying on the family Hmore »to supply randomness, as in past work, we instead rely on randomness within our table-maintenance algorithm.« less
  5. The binary-forking model is a parallel computation model, formally defined by Blelloch et al., in which a thread can fork a concurrent child thread, recursively and asynchronously. The model incurs a cost of Theta(log n) to spawn or synchronize n tasks or threads. The binary-forking model realistically captures the performance of parallel algorithms implemented using modern multithreaded programming languages on multicore shared-memory machines. In contrast, the widely studied theoretical PRAM model does not consider the cost of spawning and synchronizing threads, and as a result, algorithms achieving optimal performance bounds in the PRAM model may not be optimal in the binary-forking model. Often, algorithms need to be redesigned to achieve optimal performance bounds in the binary-forking model and the non-constant synchronization cost makes the task challenging. In this paper, we show that in the binary-forking model we can achieve optimal or near-optimal span with negligible or no asymptotic blowup in work for comparison-based sorting, Strassen's matrix multiplication (MM), and the Fast Fourier Transform (FFT). Our major results are as follows: (1) A randomized comparison-based sorting algorithm with optimal O(log n) span and O(nlog n) work, both w.h.p. in n. (2) An optimal O(log n) span algorithm for Strassen's matrix multiplicationmore »(MM) with only a loglog n - factor blow-up in work as well as a near-optimal O(log n loglog log n) span algorithm with no asymptotic blow-up in work. (3) A near-optimal O(log n logloglog n) span Fast Fourier Transform (FFT) algorithm with less than a log n-factor blow-up in work for all practical values of n (i.e., n le 10 ^10,000)« less
  6. Storage devices have complex performance profiles, including costs to initiate IOs (e.g., seek times in hard 15 drives), parallelism and bank conflicts (in SSDs), costs to transfer data, and firmware-internal operations. The Disk-access Machine (DAM) model simplifies reality by assuming that storage devices transfer data in blocks of size B and that all transfers have unit cost. Despite its simplifications, the DAM model is reasonably accurate. In fact, if B is set to the half-bandwidth point, where the latency and bandwidth of the hardware are equal, then the DAM approximates the IO cost on any hardware to within a factor of 2. Furthermore, the DAM model explains the popularity of B-trees in the 1970s and the current popularity of Bε -trees and log-structured merge trees. But it fails to explain why some B-trees use small nodes, whereas all Bε -trees use large nodes. In a DAM, all IOs, and hence all nodes, are the same size. In this article, we show that the affine and PDAM models, which are small refinements of the DAM model, yield a surprisingly large improvement in predictability without sacrificing ease of use. We present benchmarks on a large collection of storage devices showing that themore »affine and PDAM models give good approximations of the performance characteristics of hard drives and SSDs, respectively. We show that the affine model explains node-size choices in B-trees and Bε -trees. Furthermore, the models predict that B-trees are highly sensitive to variations in the node size, whereas Bε -trees are much less sensitive. These predictions are born out empirically. Finally, we show that in both the affine and PDAM models, it pays to organize data structures to exploit varying IO size. In the affine model, Bε -trees can be optimized so that all operations are simultaneously optimal, even up to lower-order terms. In the PDAM model, Bε -trees (or B-trees) can be organized so that both sequential and concurrent workloads are handled efficiently. We conclude that the DAM model is useful as a first cut when designing or analyzing an algorithm or data structure but the affine and PDAM models enable the algorithm designer to optimize parameter choices and fill in design details.« less
  7. The classical paging problem, introduced by Sleator and Tarjan in 1985, formalizes the problem of caching pages in RAM in order to minimize IOs. Their online formulation ignores the cost of address translation: programs refer to data via virtual addresses, and these must be translated into physical locations in RAM. Although the cost of an individual address translation is much smaller than that of an IO, every memory access involves an address translation, whereas IOs can be infrequent. In practice, one can spend money to avoid paging by over-provisioning RAM; in contrast, address translation is effectively unavoidable. Thus address-translation costs can sometimes dominate paging costs, and systems must simultane- ously optimize both. To mitigate the cost of address translation, all modern CPUs have translation lookaside buffers (TLBs), which are hardware caches of common address translations. What makes TLBs interesting is that a single TLB entry can potentially encode the address translation for many addresses. This is typically achieved via the use of huge pages, which translate runs of contiguous virtual addresses to runs of contiguous physical addresses. Huge pages reduce TLB misses at the cost of increasing the IOs needed to maintain contiguity in RAM. This tradeoff between TLB missesmore »and IOs suggests that the classical paging problem does not tell the full story. This paper introduces the Address-Translation Problem, which formalizes the problem of maintaining a TLB, a page table, and RAM in order to minimize the total cost of both TLB misses and IOs. We present an algorithm that achieves the benefits of huge pages for TLB misses without the downsides of huge pages for IOs.« less
  8. Today’s filters, such as quotient, cuckoo, and Morton, have a trade-off between space and speed; even when moderately full (e.g., 50%-75% full), their performance degrades nontrivially. The result is that today’s systems designers are forced to choose between speed and space usage. In this paper, we present the vector quotient filter (VQF). Locally, the VQF is based on Robin Hood hashing, like the quotient filter, but uses power-of-two-choices hashing to reduce the variance of runs, and thus others consistent, high throughput across load factors. Power-of-two-choices hashing also makes it more amenable to concurrent updates, compared to the cuckoo filter and variants. Finally, the vector quotient filter is designed to exploit SIMD instructions so that all operations have $ (1) cost, independent of the size of the filter or its load factor. We show that the vector quotient flter is 2x faster for inserts compared to the Morton filter (a cuckoo filter variant and state-of- the-art for inserts) and has similar lookup and deletion performance as the cuckoo filter (which is fastest for queries and deletes), despite having a simpler design and implementation. The vector quotient filter has minimal performance decline at high load factors, a problem that has plagued modernmore »filters, including quotient, cuckoo, and Morton. Furthermore, we give a thread-safe version of the vector quotient filter and show that insertion throughput scales 3x with four threads compared to a single thread.« less
  9. A filter is adaptive if it achieves a false positive rate of " on each query independently of the answers to previous queries. Many popular filters such as Bloom filters are not adaptive—an adversary could repeat a false-positive query many times to drive the false-positive rate to 1. Bender et al. [4] formalized the definition of adaptivity and gave a provably adaptive filter, the broom filter. Mitzenmacher et al. [20] gave a filter that achieves a lower empirical false- positive rate by exploiting repetitions. We prove that an adaptive filter has a lower false- positive rate when the adversary is stochastic. Specifically, we analyze the broom filter against queries drawn from a Zipfian distribution. We validate our analysis empirically by showing that the broom filter achieves a low false-positive rate on both network traces and synthetic datasets, even when compared to a regular filter augmented with a cache for storing frequently queried items.
  10. In the parallel paging problem, there are p processors that share a cache of size k. The goal is to partition the cache among the processors over time in order to minimize their average completion time. For this long-standing open problem, we give tight upper and lower bounds of ⇥(log p) on the competitive ratio with O(1) resource augmentation. A key idea in both our algorithms and lower bounds is to relate the problem of parallel paging to the seemingly unrelated problem of green paging. In green paging, there is an energy-optimized processor that can temporarily turn off one or more of its cache banks (thereby reducing power consumption), so that the cache size varies between a maximum size k and a minimum size k/p. The goal is to minimize the total energy consumed by the computation, which is proportional to the integral of the cache size over time. We show that any efficient solution to green paging can be converted into an efficient solution to parallel paging, and that any lower bound for green paging can be converted into a lower bound for parallel paging, in both cases in a black-box fashion. We then show that, with O(1) resourcemore »augmentation, the optimal competitive ratio for deterministic online green paging is ⇥(log p), which, in turn, implies the same bounds for deterministic online parallel paging.« less