In each step of the cup game on n cups, a filler distributes up to 1" water among the cups, and then an emptier removes 1 unit of water from a single cup. The emptier’s goal is to minimize the height of the fullest cup, also known as the backlog. The cup emptying game has found extensive applications to processor scheduling, network- switch buffer management, quality of service guarantees, and data- structure deamortization. The greedy emptying algorithm (i.e., always remove from the fullest cup) is known to achieve backlog O(log n) and to be the optimal deterministic algorithm. Randomized algorithms can do significantly better, achieving backlog O(log log n) with high probability, as long as " is not too small. In order to achieve these improvements, the known randomized algorithms require that the filler is an oblivious adversary, unaware of which cups the emptier chooses to empty out of at each step. Such randomized guarantees are known to be impossible against fully adaptive fillers. We show that, even when the filler is just slightly non- adaptive, randomized emptying algorithms can still guarantee a backlog of O(log log n). In particular, we give randomized ran- domized algorithms against an elevated adaptive filler, which is an adaptive filler that can see the precise fills of every cup containing more than 3 units of water, but not of the cups containing less than 3 units.
more »
« less
Optimal Time-Backlog Tradeoffs for the Variable-Processor Cup Game. Accepted to
The \emph{p-processor cup game} is a classic and widely studied scheduling problem that captures the setting in which a p-processor machine must assign tasks to processors over time in order to ensure that no individual task ever falls too far behind. The problem is formalized as a multi-round game in which two players, a filler (who assigns work to tasks) and an emptier (who schedules tasks) compete. The emptier's goal is to minimize backlog, which is the maximum amount of outstanding work for any task. Recently, Kuszmaul and Westover (ITCS, 2021) proposed the \emph{variable-processor cup game}, which considers the same problem, except that the amount of resources available to the players (i.e., the number p of processors) fluctuates between rounds of the game. They showed that this seemingly small modification fundamentally changes the dynamics of the game: whereas the optimal backlog in the fixed p-processor game is Θ(logn), independent of p, the optimal backlog in the variable-processor game is Θ(n). The latter result was only known to apply to games with \emph{exponentially many} rounds, however, and it has remained an open question what the optimal tradeoff between time and backlog is for shorter games. This paper establishes a tight trade-off curve between time and backlog in the variable-processor cup game. Importantly, we prove that for a game consisting of t rounds, the optimal backlog is Θ(n) if and only if t≥Ω(n3). Our techniques also allow for us to resolve several other open questions concerning how the variable-processor cup game behaves in beyond-worst-case-analysis settings.
more »
« less
- Award ID(s):
- 2022448
- PAR ID:
- 10343433
- Date Published:
- Journal Name:
- International Colloquium on Automata, Languages and Programming (ICALP 2022)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the parallel repetition of one-round games involving players that can use quantum entanglement. A major open question in this area is whether parallel repetition reduces the entangled value of a game at an exponential rate --- in other words, does an analogue of Raz's parallel repetition theorem hold for games with players sharing quantum entanglement? Previous results only apply to special classes of games. We introduce a class of games we call anchored. We then introduce a simple transformation on games called \emph{anchoring}, inspired in part by the Feige-Kilian transformation, that turns \emph{any} (multiplayer) game into an anchored game. Unlike the Feige-Kilian transformation, our anchoring transformation is completeness preserving. We prove an exponential-decay parallel repetition theorem for anchored games that involve any number of entangled players. We also prove a threshold version of our parallel repetition theorem for anchored games. Together, our parallel repetition theorems and anchoring transformation provide the first hardness amplification techniques for general entangled games. We give an application to the games version of the Quantum PCP Conjecture.more » « less
-
A mediator observes no-regret learners playing an extensive-form game repeatedly across T rounds. The mediator attempts to steer players toward some desirable predetermined equilibrium by giving (nonnegative) payments to players. We call this the steering problem. The steering problem captures problems several problems of interest, among them equilibrium selection and information design (persuasion). If the mediator’s budget is unbounded, steering is trivial because the mediator can simply pay the players to play desirable actions. We study two bounds on the mediator’s payments: a total budget and a per-round budget. If the mediator’s total budget does not grow with T, we show that steering is impossible. However, we show that it is enough for the total budget to grow sublinearly with T, that is, for the average payment to vanish. When players’ full strategies are observed at each round, we show that constant per-round budgets permit steering. In the more challenging setting where only trajectories through the game tree are observable, we show that steering is impossible with constant per-round budgets in general extensive-form games, but possible in normal-form games or if the per-round budget may itself depend on T. We also show how our results can be generalized to the case when the equilibrium is being computed online while steering is happening. We supplement our theoretical positive results with experiments highlighting the efficacy of steering in large games.more » « less
-
In a recent work, Moshkovitz [FOCS '14] presented a transformation on two-player games called ``fortification'', and gave an elementary proof of an (exponential decay) parallel repetition theorem for fortified two-player projection games. In this paper, we give an \emph{analytic reformulation} of Moshkovitz's fortification framework, which was originally cast in combinatorial terms. This reformulation allows us to expand the scope of the fortification method to new settings. First, we show \emph{any} game (not just projection games) can be fortified, and give a simple proof of parallel repetition for general fortified games. Then, we prove parallel repetition and fortification theorems for games with players sharing quantum entanglement, as well as games with more than two players. This gives a new gap amplification method for general games in the quantum and multiplayer settings, two problems which have recently received much attention. An important component of our work is a variant of the fortification transformation, called ``ordered fortification", that preserves the entangled value of a game. The original fortification of Moshkovitz does not in general preserve the entangled value of a game, and this was a barrier to extending the fortification framework to the quantum setting.more » « less
-
Francisco Ruiz, Jennifer Dy (Ed.)We study the sample complexity of identifying an approximate equilibrium for two-player zero-sum n × 2 matrix games. That is, in a sequence of repeated game plays, how many rounds must the two players play before reaching an approximate equilibrium (e.g., Nash)? We derive instance-dependent bounds that define an ordering over game matrices that captures the intuition that the dynamics of some games converge faster than others. Specifically, we consider a stochastic observation model such that when the two players choose actions i and j, respectively, they both observe each other’s played actions and a stochastic observation Xij such that E [Xij ] = Aij . To our knowledge, our work is the first case of instance-dependent lower bounds on the number of rounds the players must play before reaching an approximate equilibrium in the sense that the number of rounds depends on the specific properties of the game matrix A as well as the desired accuracy. We also prove a converse statement: there exist player strategies that achieve this lower bound.more » « less
An official website of the United States government

