skip to main content


Title: Predicting lifetime by degradation tests: A case study of ISO 10995: Predicting lifetime by degradation tests
Award ID(s):
1726445
NSF-PAR ID:
10298634
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Quality and Reliability Engineering International
Volume:
34
Issue:
6
ISSN:
0748-8017
Page Range / eLocation ID:
1228 to 1237
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The accelerated degradation test (ADT) is an efficient tool for assessing the lifetime information of highly reliable products. However, conducting an ADT is very expensive. Therefore, how to conduct a cost‐constrained ADT plan is a great challenging issue for reliability analysts. By taking the experimental cost into consideration, this paper proposes a semi‐analytical procedure to determine the total sample size, testing stress levels, the measurement frequencies, and the number of measurements (within a degradation path) globally under a class of exponential dispersion degradation models. The proposed method is also extended to determine the global planning of a three‐level compromise plan. The advantage of the proposed method not only provides better design insights for conducting an ADT plan, but also provides an efficient algorithm to obtain a cost‐constrained ADT plan, compared with conventional optimal plans by grid search algorithms.

     
    more » « less
  2. The analysis of multiple dependent degradation processes is a challenging research work in the reliability field, especially for complex degradation with random jumps. To integrally handle the jump uncertainties in degradation and the dependence among degradation processes, we construct multi-dimensional Lévy processes to describe multiple dependent degradation processes in engineering systems. The evolution of each degradation process can be modeled by a one-dimensional Lévy subordinator with a marginal Lévy measure, and the dependence among all dimensions can be described by Lévy copulas and the associated multiple-dimensional Lévy measure. This Lévy measure is obtained from all its one-dimensional marginal Lévy measures and the Lévy copula. We develop the Fokker-Planck equations to describe the probability density in stochastic systems. The Laplace transforms of both reliability function and lifetime moments are derived. Numerical examples are used to demonstrate our models in lifetime analysis. 
    more » « less